Fr. 159.60

Genetic Programming Theory and Practice VIII

Anglais · Livre Relié

Expédition généralement dans un délai de 3 à 5 semaines (titre commandé spécialement)

Description

En savoir plus

The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.
Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks.
Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .

Table des matières

FINCH: A System for Evolving Java (Bytecode).- Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-Solving Genetic Programming Systems.- The Rubik Cube and GP Temporal Sequence Learning: An Initial Study.- Ensemble Classifiers: AdaBoost and Orthogonal Evolution of Teams.- Covariant Tarpeian Method for Bloat Control in Genetic Programming.- A Survey of Self Modifying Cartesian Genetic Programming.- Abstract Expression Grammar Symbolic Regression.- Age-Fitness Pareto Optimization.- Scalable Symbolic Regression by Continuous Evolution with Very Small Populations.- Symbolic Density Models of One-in-a-Billion Statistical Tails via Importance Sampling and Genetic Programming.- Genetic Programming Transforms in Linear Regression Situations.- Exploiting Expert Knowledge of Protein-Protein Interactions in a Computational Evolution System for Detecting Epistasis.- Composition of Music and Financial Strategies via Genetic Programming.- Evolutionary Art Using Summed Multi-Objective Ranks.

Résumé

The contributions in this volume are written by the foremost international researchers and practitioners in the GP arena. They examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.
Topics include: FINCH: A System for Evolving Java, Practical Autoconstructive Evolution, The Rubik Cube and GP Temporal Sequence Learning, Ensemble classifiers: AdaBoost and Orthogonal Evolution of Teams, Self-modifying Cartesian GP, Abstract Expression Grammar Symbolic Regression, Age-Fitness Pareto Optimization, Scalable Symbolic Regression by Continuous Evolution, Symbolic Density Models, GP Transforms in Linear Regression Situations, Protein Interactions in a Computational Evolution System, Composition of Music and Financial Strategies via GP, and Evolutionary Art Using Summed Multi-Objective Ranks.
Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results in GP .

Commentaire

From the reviews:
"The book consists of 14 papers and an introduction. The applications it considers clearly demonstrate the maturity of GP techniques, and their ability to efficiently address difficult problem instances. ... A specialized audience of experts in genetic algorithms will find state-of-the-art applications and methodologies in this book. It will also be of interest to practitioners for the large number of applications discussed, and to advanced students and researchers for the numerous opportunities for investigation and thesis topics." (Renato De Leone, ACM Computing Reviews, July, 2011)

Détails du produit

Collaboration Tren McConaghy (Editeur), Trent McConaghy (Editeur), Rick Riolo (Editeur), Ekaterina Vladislavleva (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 19.11.2010
 
EAN 9781441977465
ISBN 978-1-4419-7746-5
Pages 248
Poids 548 g
Illustrations XXVIII, 248 p.
Thèmes Genetic and Evolutionary Computation
Genetic and Evolutionary Computation
Genetic and Evolutionary Compu
Catégorie Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.