Fr. 207.00

Text Mining - Predictive Methods for Analyzing Unstructured Information

Anglais · Livre Relié

Expédition généralement dans un délai de 3 à 5 semaines (titre commandé spécialement)

Description

En savoir plus

Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.

Table des matières

Overview of Text Mining.- From Textual Information to Numerical Vectors.- Using Text for Prediction.- Information Retrieval and Text Mining.- Finding Structure in a Document Collection.- Looking for Information in Documents.- Case Studies.- Emerging Directions.

Résumé

Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.

Détails du produit

Auteurs Fred Damerau, Frederick Damerau, Niti Indurkhya, Nitin Indurkhya, Sholom Weiss, Sholom M Weiss, Sholom M. Weiss, T. Zhang, Tong Zhang, Tong et al Zhang
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.02.2005
 
EAN 9780387954332
ISBN 978-0-387-95433-2
Pages 237
Dimensions 163 mm x 243 mm x 19 mm
Poids 563 g
Illustrations XII, 237 p.
Catégorie Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.