Fr. 64.00

Geometric Methods in the Algebraic Theory of Quadratic Forms - Summer School, Lens, 2000

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.

Table des matières

Cohomologie non ramifiée des quadriques (B. Kahn).- Motives of Quadrics with Applications to the Theory of Quadratic Forms (A. Vishik).- Motives and Chow Groups of Quadrics with Applications to the u-invariant (N.A. Karpenko after O.T. Izhboldin).- Virtual Pfister Neigbors and First Witt Index (O.T. Izhboldin).- Some New Results Concerning Isotropy of Low-dimensional Forms (O.T. Izhboldin).- Izhboldin's Results on Stably Birational Equivalence of Quadrics (N.A. Karpenko).- My recollections about Oleg Izhboldin (A.S. Merkurjev).

Résumé

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.

Détails du produit

Auteurs Oleg Izhboldin, Oleg T Izhboldin, Oleg T. Izhboldin, Brun Kahn, Bruno Kahn, Nikita A e Karpenko, Nikita A. Karpenko, Alexander Vishik
Collaboration Jean P. Tignol (Editeur), Jean-Pierr Tignol (Editeur), Jean-Pierre Tignol (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 02.08.2005
 
EAN 9783540207283
ISBN 978-3-540-20728-3
Pages 198
Dimensions 156 mm x 238 mm x 12 mm
Poids 350 g
Illustrations XIV, 198 p.
Thèmes Lecture Notes in Mathematics
Lecture Notes in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Algebra, B, Algebraische Geometrie, Mathematics and Statistics, Algebraic Geometry, Number Theory, Quadratic forms, motives, unramified cohomology

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.