Fr. 69.00

Jordan Algebras and Algebraic Groups

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

From the reviews: "This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." (American Scientist) "By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ..." (Math. Reviews)

Table des matières


0. Preliminaries.-
1. J-structures.-
2. Examples.-
3. The Quadratic Map of a J-structure.-
4. The Lie Algebras Associated with a J-structure.-
5. J-structures of Low Degree.-
6. Relation with Jordan Algebras (Characteristic ? 2).-
7. Relation with Quadratic Jordan Algebras.-
8. The Minimum Polynomial of an Element.-
9. Ideals, the Radical.-
10. Peirce Decomposition Defined by an Idempotent Element.-
11. Classification of Certain Algebraic Groups.-
12. Strongly Simple J-structures.-
13. Simple J-structures.-
14. The Structure Group of a Simple J-structure and the Related Lie Algebras.-
15. Rationality Questions.

A propos de l'auteur

Tonny A. Springer, born on February 13, 1926 at the Hague, Holland, studied mathematics at the University of Leiden, obtaining his Ph.D. in 1951. He has been at the University of Utrecht since 1955, from 1959-1991 as a full professor, and since 1991 as an emeritus professor. He has held visiting positions at numerous prestigious institutions all over the globe, including the Institute for Advanced Study (Princeton), the Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette) and the Tata Institute of Fundamental Research (Bombay). Throughout his career T. A. Springer has been involved in research on various aspects of the theory of linear algebraic groups (conjugacy classes, Galois cohomology, Weyl groups).

Commentaire

From the reviews: "This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." (American Scientist) "By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ..." (Math. Reviews)

Détails du produit

Auteurs Tonny A Springer, Tonny A. Springer
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.1997
 
EAN 9783540636328
ISBN 978-3-540-63632-8
Pages 173
Dimensions 155 mm x 10 mm x 235 mm
Illustrations VII, 173 p.
Thèmes Classics in Mathematics
Classics in Mathematics (CIM)
Classics in Mathematics (CIM)
Classics in Mathematics
Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.