Fr. 168.00

Microwave and Rf Engineering

Anglais · Livre Relié

Expédition généralement dans un délai de 1 à 3 semaines (ne peut pas être livré de suite)

Description

En savoir plus

Informationen zum Autor Roberto Sorrentino received the Laurea degree in Electronic Engineering from the University of Rome "La Sapienza"! Rome! Italy! in 1971! where he was an Associate Professor until 1986. From 1986 to 1990 he was a Professor at the University of Rome "Tor Vergata". Since 1990 he has been a Professor at the University of Perugia! Perugia! Italy. He has authored and co-authored over 100 technical papers in international journals! 300 refereed conference papers and three books in the area of the analysis and design of microwave passive circuits and antennas. He is an IEEE Fellow (1990)! a recipient of the IEEE Third Millennium Medal (2000) and of the Distinguished Educator Award from IEEE MTT-S (2004). He was the President of the European Microwave Association from 1998 to 2009.Giovanni Bianchi received the Laurea degree in Electronic Engineering from the University of Rome "La Sapienza"! Rome! Italy! in 1987. In 1988! he joined the microwave department of Electtronica S.p.A. where ie was involved in microwave components (including GaAs MMICs) and subassembly design. He joined Motorola PCS in 2000! where he worked on GSM and WCDMA mobile phone design! and in 2004 joined SDS S.r.L where he was responsible for microwave designs. Since January 2008 he has worked as a R&D Engineer in the hardware/RF division at Verigy! and is an expert in high frequency theory and techniques. In his 23 years of design experience he has covered both passive and active microwave components! including filters! amplifiers! oscillators! and synthesizers. He is the author of four books (including the present one) as well as 12 papers. Klappentext An essential text for both students and professionals! combing detailed theory with clear practical guidanceThis outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering! encompassing electromagnetic theory! microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling.With examples taken from the authors' own experience! this book also covers:* network and signal theory;* electronic technology with guided electromagnetic propagation;* microwave circuits such as linear and non-linear circuits! resonant circuits and cavities! monolithic microwave circuits (MMICs)! wireless architectures and integrated circuits;* passive microwave components! control components;* microwave filters and matching networks.Simulation files are included in a CD Rom! found inside the book.Microwave and RF Engineering presents up-to-date research and applications at different levels of difficulty! creating a useful tool for a first approach to the subject as well as for subsequent in-depth study. It is therefore indispensable reading for advanced professionals and designers who operate at high frequencies as well as senior students who are first approaching the subject. Zusammenfassung An essential text for both students and professionals! combining detailed theory with clear practical guidanceThis outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering! encompassing electromagnetic theory! microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling.With examples taken from the authors' own experience! this book also covers:* network and signal theory;* electronic technology with guided electromagnetic propagation;* microwave circuits such as linear and non-linear circuits! resonant circuits and cavities! monolithic microwave circuits (MMICs)! wireless architectures and integrated circuits;* passive microwave components! control components;* microwave filters and matching networks.* Simulation files are included in a CD Rom! found inside the book....

Table des matières

About the Authors.

Preface.

1 Introduction.

1.1 Microwaves and radio frequencies.

1.2 Frequency bands.

1.3 Applications.

2 Basic electromagnetic theory.

2.1 Introduction.

2.2 Maxwell's equations.

2.3 Time-harmonic EM fields; polarization of a vector.

2.4 Maxwell's equations in the harmonic regime.

2.5 Boundary conditions.

2.6 Energy and power of the EM field; Poynting's theorem.

2.7 Some fundamental theorems.

2.8 Plane waves.

2.9 Solution of the wave equation in rectangular coordinates.

2.10 Reflection and transmission of plane waves; Snel's laws.

2.11 Electrodynamic potentials.

3 Guided EM propagation.

3.1 Introduction.

3.2 Cylindrical structures; solution of Maxwell's equations as TE, TM and TEM modes.

3.3 Modes of propagation as transmission lines.

3.4 Transmission lines as 1-D circuits.

3.5 Phase velocity, group velocity and energy velocity.

3.6 Properties of the transverse modal vectors et, ht; field expansion in a waveguide.

3.7 Loss, attenuation and power handling in real waveguides.

3.8 The rectangular waveguide.

3.9 The ridge waveguide.

3.10 The circular waveguide.

3.11 The coaxial cable.

3.12 The parallel-plate waveguide.

3.13 The stripline.

3.14 The microstrip line.

3.14.1 The planar waveguide model.

3.15 The coplanar waveguide.

3.16 Coupled lines.

4 Microwave circuits.

4.1 Introduction.

4.2 Microwave circuit formulation.

4.3 Terminated transmission lines.

4.4 The Smith chart.

4.5 Power flow.

4.6 Matrix representations.

4.7 Circuit model of a transmission line section.

4.8 Shifting the reference planes.

4.9 Loaded two-port network.

4.10 Matrix description of coupled lines.

4.11 Matching of coupled lines.

4.12 Two-port networks using coupled-line sections.

5 Resonators and cavities.

5.1 Introduction.

5.2 The resonant condition.

5.3 Quality factor or Q.

5.4 Transmission line resonators.

5.5 Planar resonators.

5.6 Cavity resonators.

5.7 Computation of the Q factor of a cavity resonator.

5.8 Dielectric resonators.

5.9 Expansion of EM fields.

6 Impedance matching.

6.1 Introduction.

6.2 Fano's bound.

6.3 Quarter-wavelength transformer.

6.4 Multi-section quarter-wavelength transformers.

6.5 Line and stub transformers; stub tuners.

6.6 Lumped L networks.

7 Passive microwave components.

7.1 Introduction.

7.2 Matched loads.

7.3 Movable short circuit.

7.4 Attenuators.

7.5 Fixed phase shifters.

7.6 Junctions and interconnections.

7.7 Dividers and combiners.

7.8 Lumped element realizations.

7.9 Multi-beam forming networks.

7.10 Non-reciprocal components.

8 Microwave filters.

8.1 Introduction.

8.2 Definitions.

8.3 Lowdpass prototype.

8.4 Semi-lumped lowdpass filters.

8.5 Frequency transformations.

8.6 Kuroda identities.

8.7 Immittance inverters.

9 Basic concepts for microwave component design.

9.1 Introduction.

9.2 Cascaded linear two-port networks.9

9.3 Signal flow graphs.

9.4 Noise in two-port networks.

9.5 Nonlinear two-port networks.

9.6 Semiconductors devices.

9.7 Electrical models of high-frequency semiconductor devices.

10 Microwave control components.

10.1 Introduction.

10.2 Switches.

10.3 Variable attenuators.

10.4 Phase shifters.

11 Amplifiers.

11.1 Introduction.

11.2 Small-signal amplifiers.

11.3 Low-noise amplifiers.

11.4 Design of trial amplifier.

11.5 Power amplifiers.

11.6 Other amplifier configurations.

11.7 Some examples of microwave amplifiers.

12 Oscillators.

12.1 Introduction.

12.2 General principles.
12.3 Negative resistance oscillators.

12.4 Positive feedback oscillators.

12.5 Standard oscillator configuration.

12.6 Design of a trial oscillator.

12.7 Oscillator specifications.

12.8 Special oscillators.

12.9 Design of a push-push microwave VCO.

13 Frequency converters.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.