Fr. 143.00

Introduction to Harmonic Analysis and Generalized Gelfand Pairs

Anglais · Livre Relié

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

This book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed.
This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space.
From the contents

  • Fourier series
  • Fourier integrals
  • Locally compact groups
  • Haar measures
  • Harmonic analysis on locally compact abelian groups
  • Theory and examples of Gelfand pairs
  • Theory and examples of generalized Gelfand pairs

A propos de l'auteur










Gerrit van Dijk, Leiden University, Netherlands

Commentaire

"The book under review is basically self-contained, only requiring basic functional analysis, some knowledge of distribution theory and elementary Lie theory. The material presented in the book is carefully explained so that it can be used for self-study." Mathematical Reviews

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.