Fr. 189.00

Radial Basis Function Networks 1. Vol.1 - Recent Developments in Theory and Applications

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.

Table des matières

Dynamic RBF networks.- A hyperrectangle-based method that creates RBF networks.- Hierarchical radial basis function networks.- RBF neural networks with orthogonal basis functions.- On noise-immune RBF networks.- Robust RBF networks.- An introduction to kernel methods.- Unsupervised learning using radial kernels.- RBF learning in a non-stationary environment: the stability-plasticity dilemma.- A new learning theory and polynomial-time autonomous learning algorithms for generating RBF networks.- Evolutionary optimization of RBF networks.

Résumé

The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.

Détails du produit

Collaboration C Jain (Editeur), C Jain (Editeur), Lakhmi C. Jain (Editeur), Robert J. Howlett (Editeur), Rober J Howlett (Editeur), Robert J Howlett (Editeur), Robert J. Howlett (Editeur), Robert J.Howlett (Editeur), Lakhmi C. Jain (Editeur)
Edition Physica-Verlag
 
Langues Anglais
Format d'édition Livre Relié
Sortie 10.04.2001
 
EAN 9783790813678
ISBN 978-3-7908-1367-8
Pages 318
Poids 598 g
Illustrations XVIII, 318 p.
Thèmes Studies in Fuzziness and Soft Computing
Studies in Fuzziness and Soft Computing
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Performance, B, Optimization, Robotics, Artificial Intelligence, Mustererkennung, Robot, Supervised Learning, Neural Networks, engineering, pattern recognition, Automated Pattern Recognition, Pattern recognition systems, proving, learning theory, neural network

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.