Fr. 53.90

Pointwise Convergence of Fourier Series

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst. The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $ cal L 1$, filling a well-known gap in the literature.

Table des matières

From the contents:
- Part I. Fourier series and Hilbert Transform
- Hardy-Littlewood maximal function
- Fourier Series
- Hilbert Transform
- Part II. The Carleson-Hunt Theorem
- The Basic Step
- Maximal inequalities
- Growth of Partial Sums
- Carleson Analysis of the Function
- Allowed pairs
- Pair Interchange Theorems
- All together
- Part III. Consequences
- Some spaces of functions
- The Maximal Operator of Fourier series

Résumé

This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.

Détails du produit

Auteurs Juan Arias de Reyna
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2007
 
EAN 9783540432708
ISBN 978-3-540-43270-8
Pages 175
Poids 310 g
Thèmes Lecture Notes in Mathematics
Lecture Notes in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Analyse

B, Function, Theorem, Mathematics and Statistics, Fourier Analysis, Convergence, Proof, maximal operator

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.