Fr. 146.00

Variational Problems with Concentration

Anglais · Livre Relié

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

To start with we describe two applications of the theory to be developed in this monograph: Bernoulli's free-boundary problem and the plasma problem. Bernoulli's free-boundary problem This problem arises in electrostatics, fluid dynamics, optimal insulation, and electro chemistry. In electrostatic terms the task is to design an annular con denser consisting of a prescribed conducting surface 80. and an unknown conduc tor A such that the electric field 'Vu is constant in magnitude on the surface 8A of the second conductor (Figure 1.1). This leads to the following free-boundary problem for the electric potential u. -~u 0 in 0. A, u 0 on 80., u 1 on 8A, 8u Q on 8A. 811 The unknowns are the free boundary 8A and the potential u. In optimal in sulation problems the domain 0. A represents the insulation layer. Given the exterior boundary 80. the problem is to design an insulating layer 0. A of given volume which minimizes the heat or current leakage from A to the environment ]R.n n. The heat leakage per unit time is the capacity of the set A with respect to n. Thus we seek to minimize the capacity among all sets A c 0. of equal volume.

Table des matières

1 Introduction.- 2 P-Capacity.- 3 Generalized Sobolev Inequality.- 3.1 Local generalized Sobolev inequality.- 3.2 Critical power integrand.- 3.3 Volume integrand.- 3.4 Plasma integrand.- 4 Concentration Compactness Alternatives.- 4.1 CCA for critical power integrand.- 4.2 Generalized CCA.- 4.3 CCA for low energy extremals.- 5 Compactness Criteria.- 5.1 Anisotropic Dirichlet energy.- 5.2 Conformai metrics.- 6 Entire Extremals.- 6.1 Radial symmetry of entire extremals.- 6.2 Euler Lagrange equation (independent variable).- 6.3 Second order decay estimate for entire extremals.- 7 Concentration and Limit Shape of Low Energy Extremals.- 7.1 Concentration of low energy extremals.- 7.2 Limit shape of low energy extremals.- 7.3 Exploiting the Euler Lagrange equation.- 8 Robin Functions.- 8.1 P-Robin function.- 8.2 Robin function for the Laplacian.- 8.3 Conformai radius and Liouville's equation.- 8.4 Computation of Robin function.- 8.5 Other Robin functions.- 9 P-Capacity of Small Sets.- 10 P-Harmonic Transplantation.- 11 Concentration Points, Subconformai Case.- 11.1 Lower bound.- 11.2 Identification of concentration points.- 12 Conformai Low Energy Limits.- 12.1 Concentration limit.- 12.2 Conformai CCA.- 12.3 Trudinger-Moser inequality.- 12.4 Concentration of low energy extremals.- 13 Applications.- 13.1 Optimal location of a small spherical conductor.- 13.2 Restpoints on an elastic membrane.- 13.3 Restpoints on an elastic plate.- 13.4 Location of concentration points.- 14 Bernoulli's Free-boundary Problem.- 14.1 Variational methods.- 14.2 Elliptic and hyperbolic solutions.- 14.3 Implicit Neumann scheme.- 14.4 Optimal shape of a small conductor.- 15 Vortex Motion.- 15.1 Planar hydrodynamics.- 15.2 Hydrodynamic Green's and Robin function.- 15.3 Point vortex model.- 15.4 Core energy method.- 15.5 Motion of isolated point vortices.- 15.6 Motion of vortex clusters.- 15.7 Stability of vortex pairs.- 15.8 Numerical approximation of vortex motion.

Commentaire

"This material is very rich, because various alternatives are possible. The book provides a good systematic overview of this difficult topic."
--Zentralblatt Math

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.