Fr. 88.00

Comparison Between Methods Estimation of Rayleigh Distribution - Second Edition

Anglais · Livre de poche

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus










We have estimated the parameters of a Rayleigh distribution using different ways, including traditional methods (classical), such as (Least Squares Method, Maximum Likelihood Method, White Method and Ridge Regression Method). The Robust methods we used are (Robustfit Method, M-estimator Method and Robust Ridge Regression Method). These methods are used to find the estimators of the parameters of this distribution we adopt an experimental study to design a number of simulation experiments (Simulation) using the software package Matlab. Default values for the parameters of the distribution and different sample sizes are used. The experiment is repeated 1000 times to get a high homogeneity. For comparison between estimators to determine which is better Several scales, including the scale Mean Squares Error (MSE) and the measure of the Mean Squares Error of Parameters (MSE¿) and II measure the coefficient of determination R2, have been used. It has been found that the least squares method is the best method of estimation among classical methods Robustfit is the best method among the Robust methods in both simulation experiments and field study of the real data.

A propos de l'auteur










Prof.Dr. Fadhil Al-Abidi holds a PhD in statistics from Baghdad University in 2001, he is Dean of college and faculty member in Al-Furat Al-Awast University. Mujtaba Zuhair holds a Msc in mathematics science from the University of Kufa in 2014, work Computer Technical Engineering Department, Faculty of Technical Engineering, The Islamic University.

Détails du produit

Auteurs Fadhil Abdul Abbas Al- Aabdi, Mujtaba Zuhair Ali Karidi
Edition LAP Lambert Academic Publishing
 
Langues Anglais
Format d'édition Livre de poche
Sortie 03.11.2025
 
EAN 9786209188442
ISBN 978-620-9-18844-2
Pages 136
Dimensions 150 mm x 220 mm x 9 mm
Poids 221 g
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Théorie des probabilités, stochastique, statistiques

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.