En savoir plus
Questo testo propone un'introduzione ai metodi matematici, probabilistici e numerici che sono alla base dei modelli per la valutazione degli strumenti derivati, come opzioni e futures, trattati nei moderni mercati finanziari. Il libro è rivolto a lettori con formazione scientifica, desiderosi di sviluppare competenze nell'ambito del calcolo stocastico applicato alla finanza. La prima parte è dedicata ad una presentazione dei modelli per i mercati in tempo discreto in cui le idee sui principi di valutazione sono illustrate in modo semplice e intuitivo. Contemporaneamente sono forniti gli elementi di base della teoria della probabilità. Successivamente la teoria dell'integrazione e del calcolo stocastico in tempo continuo viene sviluppata in maniera rigorosa ma, per quanto possibile, snella. Viene posta una particolare enfasi sui legami fra la teoria delle equazioni differenziali stocastiche e degli operatori alle derivate parziali di evoluzione. Il classico modello di Black&Scholes viene analizzato in dettaglio sia con un approccio analitico, sia nell'ambito della teoria delle martingale. La trattazione punta ad essere chiara e rigorosa piuttosto che onnicomprensiva, proponendo una comprensione approfondita del problema della valutazione e copertura di opzioni Call e Put come punto di partenza per l'affronto di strumenti derivati esotici. Data la loro importanza vengono studiate le opzioni di tipo Americano e alcuni tra i più noti derivati "path-dependent" come le opzioni Asiatiche e con barriera. Un capitolo è dedicato ad illustrare i più noti modelli di volatilità stocastica che generalizzano l'analisi di Black&Scholes. Infine la teoria precedente è accompagnata dalla descrizione dei principali metodi numerici per la valutazione di opzioni: il metodo Monte Carlo, gli alberi binomiali, i metodi alle differenze finite.
Table des matières
Derivati e arbitraggi.- Elementi di probabilità ed equazione del calore.- Modelli di mercato a tempo discreto.- Processi stocastici a tempo continuo.- Integrale stocastico.- Equazioni paraboliche a coefficienti variabili: unicità.- Modello di Black&Scholes.- Equazioni paraboliche a coefficienti variabili: esistenza.- Equazioni differenziali stocastiche.- Modelli di mercato a tempo continuo.- Opzioni Americane.- Metodi numerici.- Introduzione al calcolo di Malliavin.
A propos de l'auteur
Andrea Pascucci is a professor of Probability and Mathematical Statistics at the Alma Mater Studiorum - University of Bologna. His research activity encompasses various aspects of the theory of stochastic differential equations for diffusions and jump processes, degenerate partial differential equations, and their applications to mathematical finance. He has authored 6 books and over 80 scientific articles on the following topics: linear and nonlinear Kolmogorov-Fokker-Planck equations; regularity and asymptotic estimates of transition densities for multidimensional diffusions and jump processes; free boundary problems, optimal stopping, and applications to American-style financial derivatives; Asian options and volatility models. He has been invited as a speaker at more than 40 international conferences. He serves as an editor for the Journal of Computational Finance and is the director of a postgraduate program in Mathematical Finance at the University of Bologna.