Fr. 134.00

Computational Physics I - Numerical Methods

Anglais, Allemand · Livre Relié

En réédition, pas disponible actuellement

Description

En savoir plus

This book presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Authored by a distinguished expert in the field, it combines rigorous theoretical insights with a wealth of practical and easily accessible computational applications. This book serves as an ideal standalone text for computational physics courses at both the graduate and advanced undergraduate levels. It offers a detailed and cohesive exploration of the physics of classical and quantum systems, electrostatics, thermodynamics, statistical physics and nonlinear systems, integrating foundational principles with advanced simulation techniques.
The significantly expanded and updated fourth edition comprises two volumes. Volume 1 is dedicated to numerical methods, covering essential topics such as error analysis, numerical differentiation and integration, Fourier transforms, time-frequency analysis, and data fitting. Alongside this, it presents essential computational methods such as Monte Carlo techniques and solving Newton's equations of motion, equipping readers with the tools necessary for practical problem-solving in computational physics. New in this book is an introduction to artificial neural networks (ANNs) for elementary tasks such as classification, regression, interpolation, time series analysis and principal component analysis. It features methods for solving differential equations with ANNs, including a discussion on the concept of automatic differentiation as a necessary alternative to analytical, numerical, and symbolic differentiation. These additions offer readers deeper insights and more robust tools for their studies and research.

Table des matières

1.Error Analysis.-2.Interpolation.- 3.Differentiation.- 4.Integration.- 5.Systems of Inhomogeneous Linear Equations.- 6.Roots and Extremal Points.- 7.Fourier Transformation.- 8.Time-Frequency Analysis.- 9.Random Numbers and Monte Carlo Methods.- 10.Eigenvalue Problems.- 11.Data Fitting.- 12.Data Analysis with Arti cial Neural Networks.- 13.Discretization of Di erential Equations.- 14.Equations of Motion.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.