Fr. 113.00

Medical Image Understanding and Analysis - 29th Annual Conference, MIUA 2025, Leeds, UK, July 15-17, 2025, Proceedings, Part I

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15 17, 2025.
The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:
Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.
Part II: Image-guided Diagnosis; and Image-guided Intervention.
Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

Table des matières

.- Frontiers in Computational Pathology.
.- Transductive Survival Ranking for Pan-cancer Automatic Risk Stratification using Whole Slide Images.
.- Benchmarking Histopathology Foundation Models in a Multi-center Dataset for Skin Cancer Subtyping.
.- MitoNet: Efficient Ki-67 Detection in H&E-Stained Images.
.- ASTER: Automated Segmentation of Endometrial Histology Images for Reproductive Health Assessment.
.- Leveraging Pathology Foundation Models for Panoptic Segmentation of Melanoma in H&E Images.
.- SMatt-DINO: Spatially Aware Masked Attention Network for High Resolution Brain Image Classification.
.- Persistent Homology and Gabor Features Reveal Inconsistencies Between Widely Used Colorectal Cancer Training and Testing Datasets.
.- SWIFT-Reg: Slide-Wide Intelligent Feature-based Tissue Registration.
.- Learnable Moran s Index for Modeling Spatial Autocorrelation in Whole Slide Images to Predict Breast Cancer Outcomes.
.- Image Synthesis and Generative Artificial Intelligence.
.- Augmenting Chest X-ray Datasets with Non-Expert Annotations.
.- Leveraging Synthetic Data for Whole-Body Segmentation in X-ray Images.
.- Transform(AI)ng Radiology with CheXSBT: Integrating Dual-Attention Swin Transformer with BERT for Seamless Chest X-Ray Report Generation.
.- Cardiac Ultrasound Video Generation Using a Diffusion Model with Temporal Transformer.
.- KCLVA: Knowledge-enhanced Contrastive Learning and View-specific Attention for Chest X-ray Report Generation.
.- BlastDiffusion: A Latent Diffusion Model for Generating Synthetic Embryo Images to Address Data Scarcity in In Vitro Fertilization.
.- MediAug: Exploring Visual Augmentation in Medical Imaging.
.- On the Robustness of Medical Vision-Language Models: Are they Truly Generalizable?.
.- DiNO-Diffusion: Scaling Medical Diffusion Models via Self-Supervised Pre-Training.
.- Knowledge-Driven Hypothesis Generation for Burn Diagnosis from Ultrasound with Vision-Language Model.
.- Multimodal Federated Learning With Missing Modalities through Feature Imputation Network.
.- Parameter-Efficient Multimodal Adaptation for Certified Robustness of Medical Vision-Language Models.

Résumé

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15–17, 2025.
The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:
Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.
Part II: Image-guided Diagnosis; and Image-guided Intervention.
Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

Détails du produit

Collaboration Sharib Ali (Editeur), David C Hogg (Editeur), David Hogg (Editeur), David C. Hogg (Editeur), Michelle Peckham (Editeur)
Edition Springer, Berlin
 
Titre original Medical Image Understanding and Analysis
Langues Anglais
Format d'édition Livre de poche
Sortie 15.08.2025
 
EAN 9783031986871
ISBN 978-3-0-3198687-1
Pages 320
Dimensions 155 mm x 19 mm x 235 mm
Poids 523 g
Illustrations XXI, 320 p. 106 illus., 94 illus. in color.
Thème Lecture Notes in Computer Science
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Applications, programmes

Künstliche Intelligenz, machine learning, brain imaging, Artificial Intelligence, Deep Learning, angewandte informatik, Informationstechnik (IT), allgemeine Themen, Computer Vision, Dermatology, Computer and Information Systems Applications, Cardiac Imaging, Image processing, Computing Milieux, medical image analysis, Digital pathology, AI in medical imaging, computational models, AI generalisation, Domain adaptation for medical imaging, Microscopic Imaging

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.