Fr. 147.00

Deep Learning in Textual Low-Data Regimes for Cybersecurity

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

In today's fast-paced cybersecurity landscape, professionals are increasingly challenged by the vast volumes of cyber threat data, making it difficult to identify and mitigate threats effectively. Traditional clustering methods help in broadly categorizing threats but fall short when it comes to the fine-grained analysis necessary for precise threat management. Supervised machine learning offers a potential solution, but the rapidly changing nature of cyber threats renders static models ineffective and the creation of new models too labor-intensive. This book addresses these challenges by introducing innovative low-data regime methods that enhance the machine learning process with minimal labeled data. The proposed approach spans four key stages:

Data Acquisition: Leveraging active learning with advanced models like GPT-4 to optimize data labeling.
Preprocessing: Utilizing GPT-2 and GPT-3 for data augmentation to enrich and diversify datasets.
Model Selection: Developing a specialized cybersecurity language model and using multi-level transfer learning.
Prediction: Introducing a novel adversarial example generation method, grounded in explainable AI, to improve model accuracy and resilience.

Table des matières

Introduction.- Research Design.- Findings.- Discussion.- Conclusion.- Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies.- ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios.- A Survey on Data Augmentation for Text Classification.- Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers.- Design and Evaluation of Deep Learning Models for Real-Time Credibility Assessment in Twitter.- CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain.- Multi-Level Fine-Tuning, Data Augmentation, and Few-Shot Learning for Specialized Cyber Threat Intelligence.- XAI-Attack: Utilizing Explainable AI to Find Incorrectly Learned Patterns for Black-Box Adversarial Example Creation.

A propos de l'auteur

Dr. rer. nat. Markus Bayer is a research associate and post-doctoral researcher at the Chair of Science and Technology for Peace and Security (PEASEC) in the Department of Computer Science at the Technical University of Darmstadt.

Résumé

In today's fast-paced cybersecurity landscape, professionals are increasingly challenged by the vast volumes of cyber threat data, making it difficult to identify and mitigate threats effectively. Traditional clustering methods help in broadly categorizing threats but fall short when it comes to the fine-grained analysis necessary for precise threat management. Supervised machine learning offers a potential solution, but the rapidly changing nature of cyber threats renders static models ineffective and the creation of new models too labor-intensive. This book addresses these challenges by introducing innovative low-data regime methods that enhance the machine learning process with minimal labeled data. The proposed approach spans four key stages:

Data Acquisition: Leveraging active learning with advanced models like GPT-4 to optimize data labeling.
Preprocessing: Utilizing GPT-2 and GPT-3 for data augmentation to enrich and diversify datasets.
Model Selection: Developing a specialized cybersecurity language model and using multi-level transfer learning.
Prediction: Introducing a novel adversarial example generation method, grounded in explainable AI, to improve model accuracy and resilience.

Détails du produit

Auteurs Markus Bayer
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 13.03.2026
 
EAN 9783658487775
ISBN 978-3-658-48777-5
Pages 347
Dimensions 148 mm x 20 mm x 210 mm
Poids 486 g
Illustrations XXVIII, 347 p. 45 illus., 35 illus. in color. Textbook for German language market.
Thème Technology, Peace and Security I Technologie, Frieden und Sicherheit
Catégories Sciences naturelles, médecine, informatique, technique > Technique > Général, dictionnaires

Computersicherheit, Netzwerksicherheit, machine learning, Maschinelles Lernen, Deep Learning, Cybersecurity, Data and Information Security, Mathematical and Computational Engineering Applications, Transfer Learning, active learning, cyber threat intelligence, Data Augmentation, Adversarial Examples, Low-Data Regimes

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.