Fr. 159.00

From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book is about copies-based nonparametric estimation of the drift function in stochastic differential equations (SDEs) driven by Brownian motion, a jump process, or fractional Brownian motion. While the estimators of the drift function in SDEs are classically computed from one long-time observation of the ergodic stationary solution, here the estimation framework which is part of functional data analysis involves multiple copies of the (non-stationary) solution observed over a short-time interval. Two kinds of nonparametric estimators are investigated for SDE models, first presented in the regression framework: the projection least squares estimator and the Nadaraya-Watson estimator. Adaptive procedures are provided for possible applications in statistical learning. Primarily intended for researchers in statistical inference for stochastic processes who are interested in the copies-based observation scheme, the book will also be useful for graduate and PhD students in probability and statistics, thanks to its multiple reminders of the requisite theory, especially the chapter on nonparametric regression.

Table des matières

Introduction.- Nonparametric regression: a detailed reminder.- The projection least squares estimator of the drift function.- Going further with the projection least squares method: diffusions with jumps and fractional diffusions.- The Nadaraya-Watson estimator of the drift function.

A propos de l'auteur










Nicolas Marie is an associate professor in the Modal’X department at Paris Nanterre University. He received his PhD in probability in 2012, and his habilitation in statistics and probability in 2019. First, in the rough paths theory framework, he focused on constrained fractional diffusions. Then, since 2017, Nicolas Marie contributes to investigate the copies-based statistical inference for diffusions and fractional diffusions.


Résumé

This book is about copies-based nonparametric estimation of the drift function in stochastic differential equations (SDEs) driven by Brownian motion, a jump process, or fractional Brownian motion. While the estimators of the drift function in SDEs are classically computed from one long-time observation of the ergodic stationary solution, here the estimation framework – which is part of functional data analysis – involves multiple copies of the (non-stationary) solution observed over a short-time interval. Two kinds of nonparametric estimators are investigated for SDE models, first presented in the regression framework: the projection least squares estimator and the Nadaraya-Watson estimator. Adaptive procedures are provided for possible applications in statistical learning. Primarily intended for researchers in statistical inference for stochastic processes who are interested in the copies-based observation scheme, the book will also be useful for graduate and PhD students in probability and statistics, thanks to its multiple reminders of the requisite theory, especially the chapter on nonparametric regression.

Détails du produit

Auteurs Nicolas Marie
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 19.08.2025
 
EAN 9783031956379
ISBN 978-3-0-3195637-9
Pages 184
Dimensions 155 mm x 14 mm x 235 mm
Poids 409 g
Illustrations XII, 184 p. 10 illus., 7 illus. in color.
Thème Frontiers in Probability and the Statistical Sciences
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Théorie des probabilités, stochastique, statistiques

Stochastik, Stochastic Processes, Non-parametric Inference, fractional Brownian motion, stochastic differential equations, Stochastic Modelling in Statistics, model selection, Nonparametric Estimation, Lévy processes, PCO method

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.