Fr. 123.00

Computer Vision and Image Processing - 9th International Conference, CVIP 2024, Chennai, India, December 19-21, 2024, Revised Selected Papers, Part VI

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The Six-volume proceedings set CCIS 2473 and 2478 constitutes the refereed proceedings of the 9th International Conference on Computer Vision and Image Processing, CVIP 2024, held in Chennai, India, during December 19 21, 2024.
The 178 full papers presented were carefully reviewed and selected from 647 submissions.The papers focus on various important and emerging topics in image processing, computer vision applications, deep learning, and machine learning techniques in the domain.

Table des matières

.- Do not look so locally to fish skins: Improved YOLOv7 for fish disease detection with Transformers.
.- MDDAMFN: Mixed Dual-Direction Attention Mechanism to Enhance Facial Expression.
.- A brief review of state-of-the-art classification methods on benchmark Peripheral Blood Smears datasets.
.- Detection and Monocular Depth Estimation of Ghost Nets.
.- DiffMamba: Leveraging Mamba for Effective Fusion of Noise and Conditional Features in Diffusion Models for Skin Lesion Segmentation.
.- UDC-Mamba: Deep State Space Model for Under Display Camera Image Restoration.
.- Walking Direction Estimation using Silhouette and Skeletal Representations.
.- Realizing GAN Potential for Image Generation and Image-To-Image Translation Using Pix2Pix.
.- DSFF-Net: Depthwise Separable U-Net with Feature Fusion for Polyp Segmentation towards Hardware Deployment.
.- Cattle Identification through Multi-Biometric Features and Edge Device.
.- Fast sparse SAR Image Reconstruction Using Sparsity Independent Regularized Pursuit.
.- Space Varying Motion Blur Degradation Dataset and Model for Semantic Segmentation.
.- Multi-class classification of Gastrointestinal Disease detection using Vision Transformers.
.- MGC: Music Genre Classification Using a Hybrid CNN-LSTM Model with MFCC Input.
.- DBTC-Net: Dual-Branch Transformer-CNN Network for Brain Tumor Segmentation.

Résumé

The Six-volume proceedings set CCIS 2473 and 2478 constitutes the refereed proceedings of the 9th International Conference on Computer Vision and Image Processing, CVIP 2024, held in Chennai, India, during December 19–21, 2024.
The 178 full papers presented were carefully reviewed and selected from 647 submissions.The papers focus on various important and emerging topics in image processing, computer vision applications, deep learning, and machine learning techniques in the domain.

Détails du produit

Collaboration R Balasubramanian (Editeur), R. Balasubramanian (Editeur), Deep Gupta (Editeur), Jagadeesh Kakarla (Editeur), Subrahmanyam Murala (Editeur), Subrahmanyam Murala et al (Editeur), Santosh Kumar Vipparthi (Editeur)
Edition Springer, Berlin
 
Titre original Computer Vision and Image Processing
Langues Anglais
Format d'édition Livre de poche
Sortie 24.06.2025
 
EAN 9783031937026
ISBN 978-3-0-3193702-6
Pages 214
Dimensions 155 mm x 13 mm x 235 mm
Poids 365 g
Illustrations XXII, 214 p. 86 illus., 79 illus. in color.
Thème Communications in Computer and Information Science
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Applications, programmes

Computersicherheit, Künstliche Intelligenz, Netzwerksicherheit, machine learning, Lehrmittel, Lerntechnologien, E-Learning, Artificial Intelligence, Deep Learning, Security, Images, Features, Computer Vision, Data and Information Security, Computer Imaging, Vision, Pattern Recognition and Graphics, Computers and Education, Image processing, Computer Application in Social and Behavioral Sciences

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.