Fr. 168.00

Machine Learning in Protein Science - Efficient Prediction of Protein Structures and Properties

Anglais · Livre Relié

Paraît le 05.11.2025

Description

En savoir plus

This unique practical reference for protein scientist shows how to harness the power of machine learning for quick and efficient full quantum mechanical calculations of protein structures and properties.

Table des matières

Introduction
Fundamentals of Theoretical Calculations on Protein Systems
Protein Structure Prediction by Artificial Intelligence
Methods and Tools for Predicting Protein Folding from Free Energy Change upon Mutation
Deep Neural Network-assisted Full-System Quantum Mechanical (FQM) Calculations of Proteins
Transfer Learning-assisted Full-System Quantum Mechanical (FQM) Calculations of Proteins
Protein Interaction Prediction with Artificial Intelligence
Protein Function Annotation with Machine Learning
Machine Learning-driven ab initio Protein Design
Large Language Models of Protein Systems
Outlook

A propos de l'auteur

Jinjin Li is a professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University in Shanghai, China. Having obtained her Ph.D. degrees from Shanghai University, she performed postdoctoral work at the University of Illinois, USA and was a Senior Research Fellow at the University of California, USA. Professor Li has authored over 200 publications and four monographs. She is also a long-standing editorial board member and reviewer for several international academic journals.
 
Yanqiang Han is an assistant professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University in Shanghai, China. He obtained his Ph.D. degrees from Shanghai University. He has authored over 30 publications in the field of computational biology and machine learning and is a reviewer for several international academic journals.

Détails du produit

Auteurs Yanqiang Han, Jinjin Li
Edition Wiley-VCH
 
Langues Anglais
Format d'édition Livre Relié
Sortie 05.11.2025
 
EAN 9783527352159
ISBN 978-3-527-35215-9
Pages 256
Illustrations 30 SW-Abb., 50 Farbabb.
Catégories Sciences naturelles, médecine, informatique, technique > Chimie > Chimie organique

Chemie, Proteine, Life Sciences, Biowissenschaften, chemistry, Protein Science, Bioinformatics & Computational Biology, Computational Chemistry u. Molecular Modeling, Computational Chemistry & Molecular Modeling

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.