Fr. 70.00

Convex Variational Problems - Linear, Nearly Linear and Anisotropic Growth Conditions

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions.
This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.

Table des matières

1. Introduction.- 2. Variational problems with linear growth: the general setting.- 3. Variational integrands with ($,mu ,q$)-growth.- 4. Variational problems with linear growth: the case of $mu $-elliptic integrands.- 5. Bounded solutions for convex variational problems with a wide range of anisotropy.- 6. Anisotropic linear/superlinear growth in the scalar case.- A. Some remarks on relaxation.- B. Some density results.- C. Brief comments on steady states of generalized Newtonian fluids.- D. Notation and conventions.- References.- Index.

Détails du produit

Auteurs M. Bildhauer, Michael Bildhauer
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 20.06.2003
 
EAN 9783540402985
ISBN 978-3-540-40298-5
Pages 220
Dimensions 156 mm x 239 mm x 10 mm
Poids 388 g
Illustrations XII, 220 p.
Thème Lecture Notes in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Autres

B, Optimization, Differentialrechnung und -gleichungen, Mathematics and Statistics, Partial Differential Equations, Differential calculus & equations, Differential equations, Calculus of Variations and Optimization, Calculus of variations, Calculus of Variations and Optimal Control; Optimization

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.