Fr. 125.00

Polynomial Functors - A Mathematical Theory of Interaction

Anglais · Livre de poche

Paraît le 30.09.2025

Description

En savoir plus










An example- and exercise-filled book for mathematical and scientific modelers with an introductory knowledge of category theory (e.g., readers of Cheng's 'Joy of Abstraction' or Fong & Spivak's 'Invitation to Applied Category Theory') interested in learning to apply the category of polynomial functors to real-world interacting dynamical systems.

Table des matières










Part I. The Category of Polynomial Functors: 1. Representable functors from the category of sets; 2. Polynomial functors; 3. The category of polynomial functors; 4. Dynamical systems as dependent lenses; 5. More categorical properties of polynomials; Part II. A Different Category of Categories: 6. The composition product; 7. Polynomial comonoids and retrofunctors; 8. Categorical properties of polynomial comonoids; References; Index.

A propos de l'auteur

Nelson Niu is a Ph.D. Student in the Department of Mathematics at the University of Washington. He was a keynote speaker on Polynomial Functors at the 2022 Artificial General Intelligence Conference. He conducted research in applied category theory with David I. Spivak at MIT and currently consults with NASA on category theory applied to Advanced Air Mobility Architectures.David I. Spivak is Senior Scientist and Institute Fellow at Topos Institute. He earned his Ph.D. in mathematics from UC Berkeley in 2007. He went on to demonstrate the broad applicability of category theory during his postdoctoral work and ten years at MIT. He also co-founded the Topos Institute and has authored three books on category theory applications.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.