Fr. 104.00

Binomial Ideals

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals.  In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics.  
The book begins with a brief, self-contained overview of the modern theory of Gröbner bases and the necessary algebraic and homological concepts from commutative algebra.  Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes.  Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics.  Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented.
Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics.  Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.

Table des matières

Part I: Basic Concepts.- Polynomial Rings and Gröbner Bases.- Review of Commutative Algebra.- Part II:Binomial Ideals and Convex Polytopes.- Introduction to Binomial Ideals.- Convex Polytopes and Unimodular Triangulations.- Part III. Applications in Combinatorics and Statistics- Edge Polytopes and Edge Rings.- Join-Meet Ideals of Finite Lattices.- Binomial Edge Ideals and Related Ideals.- Ideals Generated by 2-Minors.- Statistics.- References.- Index.

A propos de l'auteur

Jürgen Herzon is a professor at the University of Duisburg-Essen and coauthor of Monomial Ideals (2011) with Takayuki Hibi.
Takayuki Hibi is a professor at Osaka University.
Hidefumi Ohsugi is a professor at Rikkyo University. 

Résumé

This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals.  In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics.  
The book begins with a brief, self-contained overview of the modern theory of Gröbner bases and the necessary algebraic and homological concepts from commutative algebra.  Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes.  Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics.  Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented.
Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics.  Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.

Commentaire

"This is a valuable resource for students and researchers entering this area of combinatorial commutative algebra." (Thomas Kahle, Mathematical Reviews, November, 2019)

Détails du produit

Auteurs Jürgen Herzog, Takayuki Hibi, Hidefumi Ohsugi
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 10.10.2018
 
EAN 9783319953472
ISBN 978-3-31-995347-2
Pages 321
Dimensions 157 mm x 243 mm x 25 mm
Poids 666 g
Illustrations XIX, 321 p. 55 illus., 4 illus. in color.
Thème Graduate Texts in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

B, Diskrete Mathematik, Combinatorics, Mathematics and Statistics, Algebraic Geometry, Discrete Mathematics, Discrete geometry, Convex and Discrete Geometry, Convex geometry, Combinatorics & graph theory, Commutative algebra, Commutative rings, Commutative Rings and Algebras

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.