Fr. 197.00

Observability and Mathematics Modeling - Hilbert, Euclid, Gauss-Bolyai-Lobachevsky, and Riemann Geometries

Anglais · Livre Relié

Expédition généralement dans un délai de 3 à 5 semaines

Description

En savoir plus

Observability in Mathematics were developed by authors based on denial of infinity idea. We introduce Observers into arithmetic, and arithmetic becomes dependent on Observers. And after that the basic mathematical parts also become dependent on Observers. One of such parts is geometry. Geometry plays important role not only in pure Mathematics but in contemporary Physics, for example, in Relativity theory, Quantum Yang-Mills theory. We call New Geometry both Observers in arithmetics and in geometry. We reconsider the basis of classic geometry (points, straight lines, planes and space) from this Mathematics point of view. The relations of connection, order, parallels (Euclid, Gauss-Bolyai-Lobachevsky, Riemann), congruence, continuity are discovered and have new properties. We show that almost all classic geometry theorems are satisfied in Mathematics with Observers geometry with probabilities less than 1.
That means classic geometries are not a limiting cases of the Observer's geometry, but are only particular cases. And new geometry opens the road to reconsider differential geometry, algebraic geometry, geometric algebra, topology, and also to reconsider geometrical applications to various parts of contemporary physics.
We proved that Mathematics with Observers gives a birth a new geometry.


A propos de l'auteur

Nikolai Khots, Senior in High School, Eagle Scout, Top ten percent ranked in class, 4.5 GPA, 5 club positions, member of the American Mathematical Society since 2022, one math book published (with co-author Boris Khots).
Boris Khots, Self-Employment, Independent researcher, member of the American Mathematical Society since 1995. More than 150 scientific publications. Main research focus - mathematics (mathematics with observers, Lie groups and algebras) and it’s application to physics.

Résumé

Observability in Mathematics were developed by authors based on denial of infinity idea. We introduce Observers into arithmetic, and arithmetic becomes dependent on Observers. And after that the basic mathematical parts also become dependent on Observers. One of such parts is geometry. Geometry plays important role not only in pure Mathematics but in contemporary Physics, for example, in Relativity theory, Quantum Yang-Mills theory. We call New Geometry both Observers in arithmetics and in geometry. We reconsider the basis of classic geometry (points, straight lines, planes and space) from this Mathematics point of view. The relations of connection, order, parallels (Euclid, Gauss-Bolyai-Lobachevsky, Riemann), congruence, continuity are discovered and have new properties. We show that almost all classic geometry theorems are satisfied in Mathematics with Observers geometry with probabilities less than 1.
That means classic geometries are not a limiting cases of the Observer’s geometry, but are only particular cases. And new geometry opens the road to reconsider differential geometry, algebraic geometry, geometric algebra, topology, and also to reconsider geometrical applications to various parts of contemporary physics.
We proved that Mathematics with Observers gives a birth a new geometry.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.