Fr. 56.90

Survival Analysis - Efficient Nonparametric Curve Estimation For Censored Data with R Examples

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This textbook provides a unified account of estimating the survival function, hazard rate, cumulative hazard, density, regression, conditional distributions, and linear functionals for the current status censored and right-censored data. The book contains the theory and methodology of efficient estimation, adaptation, dimension reduction, and confidence bands as well as the universal E-estimator for small samples.  Exercises and a large number of simulated and real-life examples that can be repeated and modified using the complementary R package are also included. This coverage, together with the intuitive style of presentation, is ideal for people entering this field. The context is suitable for self-study or a one-semester course for graduate students with majors ranging from biostatistics and data analytics to econometrics and actuarial science.

Table des matières

Chapter 1. Introduction.- Chapter 2. Current Status Censoring.- Chapter 3. Right-Censoring.- Chapter 4. References.

A propos de l'auteur

Sam Efromovich, Ph.D., is an Endowed Professor and the Head of Actuarial Program in the Department of Mathematical Sciences at The University of Texas at Dallas. He is an Elected Fellow of the American Statistical Association and of the Institute of Mathematical  Statistics and is well known for his work on the theory and applications of nonparametric curve estimation.

Résumé

This textbook provides a unified account of estimating the survival function, hazard rate, cumulative hazard, density, regression, conditional distributions, and linear functionals for the current status censored and right-censored data. The book contains the theory and methodology of efficient estimation, adaptation, dimension reduction, and confidence bands as well as the universal E-estimator for small samples.  Exercises and a large number of simulated and real-life examples that can be repeated and modified using the complementary R package are also included. This coverage, together with the intuitive style of presentation, is ideal for people entering this field. The context is suitable for self-study or a one-semester course for graduate students with majors ranging from biostatistics and data analytics to econometrics and actuarial science.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.