Fr. 103.00

Pattern Recognition - 27th International Conference, ICPR 2024, Kolkata, India, December 1-5, 2024, Proceedings, Part I

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1-5, 2024.
The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.

Table des matières

Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling.- Deep Evidential Active Learning with Uncertainty-Aware Determinantal Point Process.- Knowledge Distillation in Deep Networks under a Constrained Query Budget.- Adabot: An Adaptive Trading Bot using an Ensemble of Phase-specific Few-shot Learners to Adapt to the Changing Market Dynamics.- Uncertainty in Ambiguity of Data.- When Uncertainty-based Active Learning May Fail.- Customizable and Programmable Deep Learning.- SegXAL: Explainable Active Learning for semantic segmentation in driving scene scenarios.- AMC-OA: Adaptive Multi-Scale Convolutional Networks with Optimized Attention for Temporal Action Localization.- Comparative Analysis Of Pretrained Models for Text Classification, Generation and Summarization : A Detailed Analysis.- Predicting Judgement Outcomes from Legal Case File Summaries with Explainable Approach.- Multi-view Ensemble Clustering-based Podcast Recommendation in Indian Regional Setting.- Privacy-Preserving Ensemble Learning using Fully Homomorphic Encryption.- Capturing Temporal Components for Time Series Classification.- Hierarchical Transfer Multi-task Learning Approach for Scene Classification.- Deep Prompt Multi-task Network for Abuse Language Detection.- All mistakes are not equal: Comprehensive Hierarchy Aware Multilabel Predictions (CHAMP).- IDAL: Improved Domain Adaptive Learning for Natural Images Dataset.- Large Multimodal Models Thrive with Little Data for Image Emotion Prediction.- Flatter Minima of Loss Landscapes Correspond with Strong Corruption Robustness.- Restoring Noisy Images using Dual-tail Encoder-Decoder Signal Separation Network.- Utilizing Deep Incomplete Classifiers To Implement Semantic Clustering For Killer Whale Photo Identification Data.- FPMT: Enhanced Semi-Supervised Model for Traffic Incident Detection.- C2F-CHART: A Curriculum Learning Approach to Chart Classification.- Vision DualGNN: Semantic Graph is Not Only You Need.- Enhancing Graph-based Clustering Based on the Regularity Lemma.- IPD: Scalable Clustering with Incremental Prototypes.- Mitigating the Impact of Noisy Edges on Graph-Based Algorithms via Adversarial Robustness Evaluation.- Adaptive Graph-based Manifold Learning for Gene Selection.

Résumé

The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1–5, 2024.
The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.

Détails du produit

Collaboration Apostolos Antonacopoulos (Editeur), Saumik Bhattacharya (Editeur), Subhasis Chaudhuri (Editeur), Rama Chellappa (Editeur), Rama Chellappa et al (Editeur), Cheng-Lin Liu (Editeur), Umapada Pal (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 28.12.2024
 
EAN 9783031781063
ISBN 978-3-0-3178106-3
Pages 470
Dimensions 155 mm x 27 mm x 235 mm
Poids 762 g
Illustrations XXXVII, 470 p. 152 illus., 136 illus. in color.
Thème Lecture Notes in Computer Science
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Applications, programmes

machine learning, Maschinelles Lernen, Artificial Intelligence, bioinformatics, Computer Vision, pattern recognition, Signal Processing, Image processing, Biometrics, Biomedical Imaging, speech processing, video processing, Machine Vision, human-computer interaction (HCI), robot vision, Document Recognition, Document Analysis

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.