Fr. 77.00

Introduction to Combinatorial Torsions - Notes taken by Felix Schlenk

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.

Table des matières

I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.- 6 The Reidemeister-Franz torsion.- 7 The Whitehead torsion.- 8 Simple homotopy equivalences.- 9 Reidemeister torsions and homotopy equivalences.- 10 The torsion of lens spaces.- 11 Milnor's torsion and Alexander's function.- 12 Group rings of finitely generated abelian groups.- 13 The maximal abelian torsion.- 14 Torsions of manifolds.- 15 Links.- 16 The Fox Differential Calculus.- 17 Computing ?(M3) from the Alexander polynomial of links.- III Refined Torsions.- 18 The sign-refined torsion.- 19 The Conway link function.- 20 Euler structures.- 21 Torsion versus Seiberg-Witten invariants.- References.

Texte suppl.

"[The book] contains much of the needed background material in topology and algebra…Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math

Commentaire

"[The book] contains much of the needed background material in topology and algebra...Concering the considerable material it covers, [the book] is very well-written and readable."
--Zentralblatt Math

Détails du produit

Auteurs Vladimir Turaev, Vladimir G. Turaev
Edition Springer, Basel
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2001
 
EAN 9783764364038
ISBN 978-3-7643-6403-8
Pages 124
Poids 260 g
Illustrations VIII, 124 p. 13 illus.
Thèmes Lectures in Mathematics
Lectures in Mathematics. ETH Zürich
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Géométrie

C, Addition, Function, Construction, geometry, Homology, Torsion, Variable, Group, Mathematics and Statistics, Manifold, Algebraic Topology, Maximum, homotopy, Reidemeister torsion

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.