Fr. 126.00

Machine Learning for Edge Computing - Frameworks, Patterns and Best Practices

Anglais · Livre de poche

Expédition généralement dans un délai de 3 à 5 semaines

Description

En savoir plus










This book divides edge intelligence into AI for edge (intelligence-enabled edge computing) and AI on edge (artificial intelligence on edge). It focuses on providing optimal solutions to the key concerns in edge computing through effective AI technologies, and it also discusses how to build AI models, i.e., model training and inference, on edge.

Table des matières










1. Fog Computing And Its Security Challenges. 2. Machine Learning for Edge Computing: Frameworks, Patterns and Best Practices. 3. Tea Vending Machine from extracts of Natural Tea leaves and other ingredients: IoT and Artificial Intelligence Enabled. 4. Recent Trends in OCR Systems: A Review. 5. A Novel Approach for Data Security using DNA Cryptography with Artificial Bee Colony Algorithm in Cloud Computing. 6. Various Techniques for Consensus Mechanism in Blockchain. 7. IoT inspired Smart Healthcare Service for diagnosing remote patients with Diabetes. 8. Segmentation of Deep Learning Models. 9. Alzheimer's disease Classification. 10. Deep learning applications on Edge computing. 11. Designing an Efficient Network based Intrusion Detection System using Artificial Bee Colony and ADASYN oversampling approach.


A propos de l'auteur










Amitoj Singh is working as Assistant Professor in the department of Computational Sciences, MRSPTU, Bathinda, Punjab, India.
Vinay Kukreja is working as an Associate professor at Chitkara University, Punjab, India.
Taghi Javdani Gandomani is an Assistant Professor at Shahrekord University, Shahrekord, Iran.


Résumé

This book divides edge intelligence into AI for edge (intelligence-enabled edge computing) and AI on edge (artificial intelligence on edge). It focuses on providing optimal solutions to the key concerns in edge computing through effective AI technologies, and it also discusses how to build AI models, i.e., model training and inference, on edge.

Détails du produit

Collaboration Taghi Javdani Gandomani (Editeur), Vinay Kukreja (Editeur), Amitoj Singh (Editeur), Singh Amitoj (Editeur)
Edition Taylor and Francis
 
Langues Anglais
Format d'édition Livre de poche
Sortie 29.07.2024
 
EAN 9780367698331
ISBN 978-0-367-69833-1
Pages 190
Poids 370 g
Illustrations schwarz-weiss Illustrationen, Raster,schwarz-weiss, Zeichnungen, schwarz-weiss, Tabellen, schwarz-weiss
Thème Edge AI in Future Computing
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Général, dictionnaires

Artificial Intelligence, COMPUTERS / General, TECHNOLOGY & ENGINEERING / Electrical, COMPUTERS / Machine Theory, COMPUTERS / Computer Engineering, Information technology: general issues, Automatic control engineering, Computer architecture & logic design, Supercomputers, Information technology: general topics, Computer architecture and logic design, Digital and Information technology: general topics

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.