Fr. 110.00

Mathematical Foundations of Reinforcement Learning

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability.
The book is divided into two parts. The first part is on the mathematical foundations of reinforcement learning, covering topics such as the Bellman equation, Bellman optimality equation, and stochastic approximation. The second part explicates reinforcement learning algorithms, including value iteration and policy iteration, Monte Carlo methods, temporal-difference methods, value function methods, policy gradient methods, and actor-critic methods.
With its comprehensive scope, the book will appeal to undergraduate and graduate students, post-doctoral researchers, lecturers, industrial researchers, and anyone interested in reinforcement learning.

Table des matières

1 Basic Concepts.- 2 State Value and Bellman Equation.- 3 Optimal State Value and Bellman Optimality Equation.- 4 Value Iteration and Policy Iteration.- 5 Monte Carlo Learning.- 6 Stochastic Approximation.- 7 Temporal-Difference Learning.- 8 Value Function Approximation.- 9 Policy Gradient.- 10 Actor-Critic Methods.

A propos de l'auteur

Shiyu Zhao is currently an Associate Professor and Director of the Intelligent Unmanned Systems Laboratory in the School of Engineering at Westlake University, Hangzhou, China. He received his Ph.D. degree in Electrical and Computer Engineering from the National University of Singapore in 2014. Before joining Westlake University in 2019, he was a Lecturer in the Department of Automatic Control and Systems Engineering at the University of Sheffield, UK. His primary research interest lies in decision-making and sensing of multi-robot systems.

Résumé

This book provides a mathematical yet accessible introduction to the fundamental concepts, core challenges, and classic reinforcement learning algorithms. It aims to help readers understand the theoretical foundations of algorithms, providing insights into their design and functionality. Numerous illustrative examples are included throughout. The mathematical content is carefully structured to ensure readability and approachability.
The book is divided into two parts. The first part is on the mathematical foundations of reinforcement learning, covering topics such as the Bellman equation, Bellman optimality equation, and stochastic approximation. The second part explicates reinforcement learning algorithms, including value iteration and policy iteration, Monte Carlo methods, temporal-difference methods, value function methods, policy gradient methods, and actor-critic methods.
With its comprehensive scope, the book will appeal to undergraduate and graduate students, post-doctoral researchers, lecturers, industrial researchers, and anyone interested in reinforcement learning.

Détails du produit

Auteurs Shiyu Zhao
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 12.09.2024
 
EAN 9789819739431
ISBN 978-981-9739-43-1
Pages 275
Dimensions 178 mm x 19 mm x 254 mm
Poids 679 g
Illustrations XVI, 275 p.
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Data Science, machine learning, Maschinelles Lernen, Datenbanken, Artificial Intelligence, Reinforcement Learning, Multiagent Systems, Mathematical introduction, Mathematical foundation

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.