Fr. 64.00

Introduction to Data Science - A Python Approach to Concepts, Techniques and Applications

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. 
Topics and features: 

  • Provides numerous practical case studies using real-world data throughout the book 
  • Supports understanding through hands-on experience of solving data science problems using Python 
  • Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
  • Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data 
  • Provides supplementary code resources and data at an associated website 

This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.

Table des matières

1. Introduction to Data Science.- 2. Toolboxes for Data Scientists.- 3. Descriptive statistics.- 4. Statistical Inference.- 5. Supervised Learning.- 6. Regression Analysis.- 7. Unsupervised Learning.- 8. Network Analysis.- 9. Recommender Systems.- 10. Statistical Natural Language Processing for Sentiment Analysis.- 11. Parallel Computing.

A propos de l'auteur

Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Associate Professor at the same institution.
The authors wish to mention that some chapters were co-written by Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera.

Résumé

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data scienceReviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.

Détails du produit

Auteurs Laura Igual, Santi Seguí
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 13.04.2024
 
EAN 9783031489556
ISBN 978-3-0-3148955-6
Pages 246
Dimensions 155 mm x 14 mm x 235 mm
Poids 400 g
Illustrations XIV, 246 p. 82 illus., 78 illus. in color.
Thème Undergraduate Topics in Computer Science
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

B, Künstliche Intelligenz, Data Science, python, Data Mining, Artificial Intelligence, Programmier- und Skriptsprachen, allgemein, computer science, Data Mining and Knowledge Discovery, Expert systems / knowledge-based systems, Python (Computer program language), Programming and scripting languages: general

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.