Fr. 76.00

Fundamentals of Fourier Analysis

Anglais · Livre Relié

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

This self-contained text introduces Euclidean Fourier Analysis to graduate students who have completed courses in Real Analysis and Complex Variables. It provides sufficient content for a two course sequence in Fourier Analysis or Harmonic Analysis at the graduate level. In true pedagogical spirit, each chapter presents a valuable selection of exercises with targeted hints that will assist the reader in the development of research skills. Proofs are presented with care and attention to detail.  Examples are provided to enrich understanding and improve overall comprehension of the material. Carefully drawn illustrations build intuition in the proofs.  Appendices contain background material for those that need to review key concepts. Compared with the author's other GTM volumes (Classical Fourier Analysis and Modern Fourier Analysis), this text offers a more classroom-friendly approach as it contains shorter sections, more refined proofs, and a wider range of exercises. Topics include the Fourier Transform, Multipliers, Singular Integrals, Littlewood-Paley Theory, BMO, Hardy Spaces, and Weighted Estimates, and can be easily covered within two semesters.

Table des matières

1 Introductory Material.- 2 Fourier Transforms, Tempered Distributions, Approximate Identities.- 3 Singular Integrals.- 4 Vector-Valued Singular Integrals and Littlewood-Paley Theory.- 5 Fractional Integrability or Differentiability and Multiplier Theorems.- 6 Bounded Mean Oscillation.- 7 Hardy Spaces.- 8 Weighted Inequalities.- Historical Notes.- Appendix A Orthogonal Matrices.- Appendix B Subharmonic Functions.- Appendix C Poisson Kernel on the Unit Strip.- Appendix D Density for Subadditive Operators.- Appendix E Transposes and Adjoints of Linear Operators.- Appendix F Faa di Bruno Formula.- Appendix G Besicovitch Covering Lemma.- Glossary.- References.- Index.

A propos de l'auteur










Loukas Grafakos is the Mahala and Rose Houchins Distinguished Professor of Mathematics at the University of Missouri at Columbia. He is author of 3 Graduate Texts in Mathematics: Classical Fourier Analysis (GTM 249), Modern Fourier Analysis (GTM 250), and Fundamentals of Fourier Analysis (GTM 302). His research is in Harmonic Analysis.

Commentaire

This book provides an introduction to Fourier analysis on Euclidean spaces intended for students who have completed first-year graduate courses in real and complex analysis. The text is self-contained and complete with numerous exercises in each section and seven appendices. (Cody B. Stockdale, Mathematical Reviews, May, 2025) 
The well-written monograph is intended to serve the purposes of a two-semester course. ... this textbook is very useful for graduate students in mathematics and a convenient reference for researchers working on multi-dimensional Fourier analysis. (Manfred Tasche, zbMATH 1551.42001, 2025)

Détails du produit

Auteurs Loukas Grafakos
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.07.2024
 
EAN 9783031564994
ISBN 978-3-0-3156499-4
Pages 407
Dimensions 155 mm x 26 mm x 235 mm
Poids 742 g
Illustrations XVI, 407 p. 29 illus.
Thème Graduate Texts in Mathematics
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Analyse

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.