Fr. 198.00

Search for Exotic Higgs Boson Decays to Merged Diphotons - A Novel CMS Analysis Using End-to-End Deep Learning

Anglais · Livre de poche

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

This book describes the first application at CMS of deep learning algorithms trained directly on low-level, "raw" detector data, or so-called end-to-end physics reconstruction. Growing interest in searches for exotic new physics in the CMS collaboration at the Large Hadron Collider at CERN has highlighted the need for a new generation of particle reconstruction algorithms. For many exotic physics searches, sensitivity is constrained not by the ability to extract information from particle-level data but by inefficiencies in the reconstruction of the particle-level quantities themselves. The technique achieves a breakthrough in the reconstruction of highly merged photon pairs that are completely unresolved in the CMS detector. This newfound ability is used to perform the first direct search for exotic Higgs boson decays to a pair of hypothetical light scalar particles H aa, each subsequently decaying to a pair of highly merged photons a yy, an analysis once thought impossible to perform. The book concludes with an outlook on potential new exotic searches made accessible by this new reconstruction paradigm.

Table des matières

Introduction.- The LHC and the CMS detector.- Theory & phenomenology.- Analysis strategy.- Data sets.- Signal selection.- a mass regression.- Analysis.- Results.- Conclusions.- Supplementary studies.

A propos de l'auteur










Michael Andrews completed his Ph.D. in Physics at Carnegie Mellon University where he was involved with the CMS collaboration at the Large Hadron Collider at CERN. He worked at CERN in Geneva, Switzerland, from 2015 to 2019 where he served as Run Coordinator for the CMS electromagnetic calorimeter group. For his distinguished service to CMS detector operations, he received the CMS Achievement Award in 2018.
Michael's physics research focuses on the application advanced deep learning techniques to problems in LHC physics. He played a leading role in the development of deep learning algorithms trained directly on low-level detector data, so-called end-to-end physics reconstruction. His work on end-to-end physics reconstruction led to the first CMS results demonstrating the breakthrough potential of this technique over traditional methods for the reconstruction of boosted decays to highly merged photons. For his contributions, summarized in his Ph.D. thesis, he was awardedthe CMS Ph.D. Thesis Award in 2021.


Détails du produit

Auteurs Michael Andrews
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.03.2024
 
EAN 9783031250934
ISBN 978-3-0-3125093-4
Pages 188
Dimensions 155 mm x 9 mm x 235 mm
Poids 355 g
Illustrations XIII, 188 p. 87 illus., 77 illus. in color.
Thème Springer Theses
Catégorie Sciences naturelles, médecine, informatique, technique > Physique, astronomie > Physique atomique et nucléaire

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.