Fr. 376.00

Noncommutative Distributions - Unitary Representation of Gauge Groups and Algebras

Anglais · Livre Relié

Expédition généralement dans un délai de 3 à 5 semaines

Description

En savoir plus

Informationen zum Autor Sergio Albeverio, Raphael J. Hoegh-Krohn, Jean A. Marion, D. Testard, B. Torrsesani Klappentext Covering important aspects of the theory of unitary representations of nuclear Lie groups, this self-contained reference presents the general theory of energy representations and addresses various extensions of path groups and algebras.;Requiring only a general knowledge of the theory of unitary representations, topological groups and elementary stochastic analysis, Noncommutative Distributions: examines a theory of noncommutative distributions as irreducible unitary representations of groups of mappings from a manifold into a Lie group, with applications to gauge-field theories; describes the energy representation when the target Lie group G is compact; discusses representations of G-valued jet bundles when G is not necessarily compact; and supplies a synthesis of deep results on quasi-simple Lie algebras.;Providing over 200 bibliographic citations, drawings, tables, and equations, Noncommutative Distributions is intended for research mathematicians and theoretical and mathematical physicists studying current algebras, the representation theory of Lie groups, and quantum field theory, and graduate students in these disciplines. Zusammenfassung Covering important aspects of the theory of unitary representations of nuclear Lie groups, this reference presents the general theory of energy representations and addresses various extensions of path groups and algebras. It discusses representations of G-valued jet bundles when G is not necessarily compact. Inhaltsverzeichnis Basic functional groups and Lie algebras; multiplicative G-distributions on a Riemannian manifold; the energy representations of gauge groups; energy representation of path groups; the algebraic level - representations of current algebras.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.