Fr. 134.00

Deep Learning Based Speech Quality Prediction

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

This book presents how to apply recent machine learning (deep learning) methods for the task of speech quality prediction. The author shows how recent advancements in machine learning can be leveraged for the task of speech quality prediction and provides an in-depth analysis of the suitability of different deep learning architectures for this task. The author then shows how the resulting model outperforms traditional speech quality models and provides additional information about the cause of a quality impairment through the prediction of the speech quality dimensions of noisiness, coloration, discontinuity, and loudness.

Table des matières

1. Introduction.- 2. Quality Assessment of Transmitted Speech.- 3. Neural Network Architectures for Speech Quality Prediction.- 4. Double-Ended Speech Quality Prediction Using Siamese Networks.- 5. Prediction of Speech Quality Dimensions With Multi-Task Learning.- 6. Bias-Aware Loss for Training From Multiple Datasets.- 7. NISQA - A Single-Ended Speech Quality Model.- 8. Conclusions.- A. Dataset Condition Tables.- B. Train and Validation Dataset Dimension Histograms.- References.

A propos de l'auteur










Gabriel Mittag received his B.Sc. and M.Sc. degree in electrical and electronic engineering at the Technische Universität Berlin. During his master's degree he spent two semesters at the RMIT University in Melbourne, Australia and focused primarily on biomedical and speech signal processing. From 2016 he was employed as research assistant at the Quality and Usability Lab at the TU Berlin, where he finished his PhD on the machine learning based prediction of speech quality. In May 2021, Gabriel Mittag started as Machine Learning Scientist at Microsoft in Redmond, WA, USA.


Détails du produit

Auteurs Gabriel Mittag
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 26.02.2023
 
EAN 9783030914813
ISBN 978-3-0-3091481-3
Pages 165
Dimensions 155 mm x 10 mm x 235 mm
Illustrations XIV, 165 p. 58 illus., 54 illus. in color.
Thème T-Labs Series in Telecommunication Services
Catégorie Sciences naturelles, médecine, informatique, technique > Technique > Electronique, électrotechnique, technique de l'information

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.