Fr. 70.00

Hyperbolic Problems and Regularity Questions

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book discusses new challenges in the quickly developing field of hyperbolic problems. Particular emphasis lies on the interaction between nonlinear partial differential equations, functional analysis and applied analysis as well as mechanics.
The book originates from a recent conference focusing on hyperbolic problems and regularity questions. It is intended for researchers in functional analysis, PDE, fluid dynamics and differential geometry.

Table des matières

Some Applications of a Closed-form Solution for Compound Options of Order N.- Surjective Linear Partial Differential Operators with Variable Coefficients on Non-quasianalytic Classes of Roumieu Type.- The Fundamental Solution for a Second Order Weakly Hyperbolic Cauchy problem.- Pseudoholomorphic Discs Attached to Pseudoconcave Domains.- Vorticity and Regularity for Solutions of Initial-boundary Value Problems for the Navier-Stokes Equations.- Exponential Decay and Regularity for SG-elliptic Operators with Polynomial Coefficients.- A Short Description of Kinetic Models for Chemotaxis.- Eigenvalues, Eigenfunctions in Domains Becoming Unbounded.- Loss of Derivatives for t?? in Strictly Hyperbolic Cauchy Problems.- On the Operator Splitting Method: Nonlinear Balance Laws and a Generalization of Trotter-Kato Formulas.- Subelliptic Estimates for some Systems of Complex Vector Fields.- Approximate Solutions to the 2-D Unsteady Navier-Stokes System with Free Surface.- Time Decay Estimates of Solutions for Wave Equations with Variable Coefficients.- On Weakly Pseudoconcave CR Manifolds.- A Note on Kohn's and Christ's Examples.- On the Nonstationary Two-dimensional Navier-Stokes Problem in Domains with Strip-like Outlets to Infinity.- A Link between Local Solvability and Partial Analyticity of Several Classes of Degenerate Parabolic Operators.- The Solution of the Equation with .- On Schauder Estimates for the Evolution Generalized Stokes Problem.- Local Analyticity and Nonlinear Vector Fields.- Strongly Hyperbolic Complex Systems Reduced Dimension, Hermitian Systems.

Résumé

This book discusses new challenges in the quickly developing field of hyperbolic problems. Particular emphasis lies on the interaction between nonlinear partial differential equations, functional analysis and applied analysis as well as mechanics. The book originates from a recent conference focusing on hyperbolic problems and regularity questions. It is intended for researchers in functional analysis, PDE, fluid dynamics and differential geometry.

 

 

Texte suppl.

From the reviews:
“This book presents the proceedings of a conference in 2004 in Ferrara, Italy, with contributions from distinguished experts in the field of hyperbolic partial differential equations and regularity analysis. … The volume provides a state of the art review for researchers in functional analysis, partial differential equations, fluid dynamics as well as applications of differential geometry.” (G. Hörmann, Monatshefte für Mathematik, Vol. 156 (4), April, 2009)

Commentaire

From the reviews:
"This book presents the proceedings of a conference in 2004 in Ferrara, Italy, with contributions from distinguished experts in the field of hyperbolic partial differential equations and regularity analysis. ... The volume provides a state of the art review for researchers in functional analysis, partial differential equations, fluid dynamics as well as applications of differential geometry." (G. Hörmann, Monatshefte für Mathematik, Vol. 156 (4), April, 2009)

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.