Fr. 70.00

Rings Close to Regular

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

Table des matières

1 Some Basic Facts of Ring Theory.- 2 Regular and Strongly Regular Rings.- 3 Rings of Bounded Index and I0-rings.- 4 Semiregular and Weakly Regular Rings.- 5 Max Rings and ?-regular Rings.- 6 Exchange Rings and Modules.- 7 Separative Exchange Rings.

A propos de l'auteur

Askar Tuganbaev received his Ph.D. at the Moscow State University in 1978 and has been a professor at Moscow Power Engineering Institute (Technological University) since 1978. He is the author of three other monographs on ring theory and has written numerous articles on ring theory.

Résumé

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

Texte suppl.

From the reviews:

"This is the first monograph on rings close to von Neumann regular rings. … The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography." (Xue Weimin, Zentralblatt MATH, Vol. 1120 (22), 2007)

Commentaire

From the reviews:

"This is the first monograph on rings close to von Neumann regular rings. ... The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography." (Xue Weimin, Zentralblatt MATH, Vol. 1120 (22), 2007)

Détails du produit

Auteurs A a Tuganbaev, A. A. Tuganbaev, A.A. Tuganbaev, Askar Tuganbaev
Edition Springer Netherlands
 
Langues Anglais
Format d'édition Livre Relié
Sortie 30.06.2009
 
EAN 9781402008511
ISBN 978-1-4020-0851-1
Pages 350
Poids 694 g
Illustrations XII, 350 p.
Thèmes Mathematics and Its Applications
Mathematics and Its Applications
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Algebra, Ring, C, Mathematics and Statistics, maxima, Associative Rings and Algebras, Proof, Maximum, Associative algebras, eXist, ring theory

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.