Fr. 99.60

Quadrangular Algebras

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 3 semaines (ne peut pas être livré de suite)

Description

En savoir plus

Zusatztext "[T]here have been many results on finite generalized quadrangles that fill a well-needed gap in the mathematical literature! but this monograph is much deeper and will enable progress to be made in a difficult technical area where some exotic forms of algebraic groups have hitherto been little understood." ---Robert L. Devaney! Bulletin of the AMS Informationen zum Autor Richard M. Weiss is William Walker Professor of Mathematics at Tufts University. He is the author of The Structure of Spherical Buildings (Princeton) and the coauthor (with Jacques Tits) of Moufang Polygons . He received a Humboldt Research Prize in 2004. Klappentext This book introduces a new class of non-associative algebras related to certain exceptional algebraic groups and their associated buildings. Richard Weiss develops a theory of these "quadrangular algebras" that opens the first purely algebraic approach to the exceptional Moufang quadrangles. These quadrangles include both those that arise as the spherical buildings associated to groups of type E6, E7, and E8 as well as the exotic quadrangles "of type F4" discovered earlier by Weiss. Based on their relationship to exceptional algebraic groups, quadrangular algebras belong in a series together with alternative and Jordan division algebras. Formally, the notion of a quadrangular algebra is derived from the notion of a pseudo-quadratic space (introduced by Jacques Tits in the study of classical groups) over a quaternion division ring. This book contains the complete classification of quadrangular algebras starting from first principles. It also shows how this classification can be made to yield the classification of exceptional Moufang quadrangles as a consequence. The book closes with a chapter on isotopes and the structure group of a quadrangular algebra. Quadrangular Algebras is intended for graduate students of mathematics as well as specialists in buildings, exceptional algebraic groups, and related algebraic structures including Jordan algebras and the algebraic theory of quadratic forms. Zusammenfassung Based on their relationship to exceptional algebraic groups, quadrangular algebras belong in a series together with alternative and Jordan division algebras, this book introduces a class of non-associative algebras related to exceptional algebraic groups and their associated buildings. Inhaltsverzeichnis Preface vii Chapter 1. Basic Definitions 1 Chapter 2. Quadratic Forms 11 Chapter 3. Quadrangular Algebras 21 Chapter 4. Proper Quadrangular Algebras 29 Chapter 5. Special Quadrangular Algebras 37 Chapter 6. Regular Quadrangular Algebras 45 Chapter 7. Defective Quadrangular Algebras 59 Chapter 8. Isotopes 77 Ch apter 9. Improp er Quadrangu lar Algebras 83 Chapter 10. Existence 95 Chapter 11. Moufang Quadrangles 109 Chapter 12. The Structure Group 125 Bibliography 133 Index 134 ...

A propos de l'auteur










Richard M. Weiss is William Walker Professor of Mathematics at Tufts University. He is the author of The Structure of Spherical Buildings (Princeton) and the coauthor (with Jacques Tits) of Moufang Polygons. He received a Humboldt Research Prize in 2004.

Détails du produit

Auteurs Richard M. Stein, Richard Weiss, Richard M. Weiss, Weiss Richard M.
Collaboration Phillip Griffiths (Editeur), John N. Mather (Editeur)
Edition Princeton University Press
 
Langues Anglais
Format d'édition Livre de poche
Sortie 09.10.2005
 
EAN 9780691124605
ISBN 978-0-691-12460-5
Pages 144
Thèmes Mathematical Notes
Mathematical Notes
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

MATHEMATICS / Number Theory, Number Theory

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.