Fr. 70.00

Pairs of Compact Convex Sets - Fractional Arithmetic with Convex Sets

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]).

Table des matières

I Convexity.- 1 Convex Sets and Sublinearity.- 2 Topological Vector Spaces.- 3 Compact Convex Sets.- II Minimal Pairs.- 4 Minimal Pairs of Convex Sets.- 5 The Cardinality of Minimal Pairs.- 6 Minimality under Constraints.- 7 Symmetries.- 8 Decompositions.- 9 Invariants.- 10 Applications.- III Semigroups.- 11 Fractions.- 12 Piecewise Linear Functions.- Open Questions.- List of Symbols.

Résumé

Deals with the theory of pairs of compact convex sets. This book also talks about the problem of finding different types of minimal representants of a pair of nonempty compact convex subsets of a locally convex vector space in the sense of the Radstrom-Hormander Theory.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.