Fr. 229.20

Evolutionary Synthesis of Pattern Recognition Systems

Anglais · Livre Relié

Expédition généralement dans un délai de 3 à 5 semaines (titre commandé spécialement)

Description

En savoir plus

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition and provides a systematic way of synthesis and analysis of object detection and recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly and cleverly select a good subset of features according to the type of objects and images to which they are applied.
This unique monograph investigates evolutionary computational techniques--such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms--to automate the synthesis and analysis of object detection and recognition systems.
The purpose of incorporating learning into the system design is to avoid the time-consuming process of feature generation and selection and to reduce the cost of building object detection and recognition systems.
Researchers, professionals, engineers, and students working in computer vision, pattern recognition, target recognition, machine learning, evolutionary learning, image processing, knowledge discovery and data mining, cybernetics, robotics, automation and psychology will find this well-developed and organized volume an invaluable resource.

Table des matières

Feature Synthesis for Object Detection.- Mdl-Based Efficient Genetic Programming for Object Detection.- Feature Selection for Object Detection.- Evolutionary Feature Synthesis for Object Recognition.- Linear Genetic Programming for Object Recognition.- Applications of Linear Genetic Programming for Object Recognition.- Summary and Future Work.

Résumé

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition. It provides a systematic way of synthesizing and analyzing object detection and pattern recognition systems. Incorporating "learning" into recognition systems will enable these systems to automatically generate new features on the fly (evolve) and cleverly select a good subset of features according to the type of objects and images to which they are applied. This book investigates evolutionary computational techniques---such as genetic programming, linear genetic programming, coevolutionary genetic programming and genetic algorithms---to automate the synthesis and analysis of object detection and recognition systems.

Détails du produit

Auteurs B. Bhanu, Bi Bhanu, Bir Bhanu, Chris Krawiec, K. Krawiec, Krzysztof Krawiec, Y. Lin, Yingqian Lin, Yingqiang Lin
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 13.04.2005
 
EAN 9780387212951
ISBN 978-0-387-21295-1
Pages 296
Dimensions 156 mm x 241 mm x 24 mm
Poids 648 g
Illustrations XXIV, 296 p. 95 illus.
Thèmes Monographs in Computer Science
Monographs in Computer Science
Catégorie Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Applications, programmes

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.