Fr. 190.00

Hybrid Frequentist;bayesian Power and Bayesian Power in Planning - Clinical Trial

Anglais · Livre Relié

Expédition généralement dans un délai de 1 à 3 semaines (ne peut pas être livré de suite)

Description

En savoir plus










This book provides a practical introduction to unconditional approaches to planning randomised clinical trials, particularly aimed at drug development in the pharmaceutical industry. This book is aimed at providing guidance to practitioners in using average power, assurance and related concepts.

Table des matières










List of Figures..........................................................................................................xi
List of Tables......................................................................................................... xiii
Preface......................................................................................................................xv
Acknowledgements..............................................................................................xix
Author.....................................................................................................................xxi
List of Acronyms................................................................................................ xxiii
1. Introduction......................................................................................................1
2. All Power Is Conditional Unless It's Absolute..........................................9
3. Assurance........................................................................................................33
4. Average Power in Non-Normal Settings...................................................59
5. Bayesian Power..............................................................................................75
6. Prior Distributions of Power and Sample Size........................................87
7. Interim Predictions......................................................................................101
8. Case Studies in Simulation........................................................................ 113
9. Decision Criteria in Proof-of-Concept Trials..........................................127
10. Surety and Assurance in Estimation........................................................149
References.............................................................................................................161
Appendix 1 Evaluation of a Double Normal Integral...................................171
Appendix 2 Besag's Candidate Formula.........................................................173
Index......................................................................................................................175


A propos de l'auteur










Andrew P. Grieve is a Statistical Research Fellow in the Centre of Excellence in Statistical Innovation at UCB Pharma. He is a former Chair of PSI (Statisticians in the Pharmaceutical Industry) and a past-President of the Royal Statistical Society. He has over 45 years of experience as a biostatistician working in the pharmaceutical industry and academia and has been active in most areas of pharmaceutical R&D in which statistical methods and statisticians are intimately involved, including drug discovery, pre-clinical toxicology, pharmaceutical development, pharmacokinetics and pharmacodynamics, phase I-IV of clinical development, manufacturing, health economics and clinical operations.


Résumé

This book provides a practical introduction to unconditional approaches to planning randomised clinical trials, particularly aimed at drug development in the pharmaceutical industry. This book is aimed at providing guidance to practitioners in using average power, assurance and related concepts.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.