Fr. 80.00

Finite Dimensional Isochronous Nonlinear Oscillating Systems - Isochronous Oscillators

Anglais · Livre de poche

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

This book presents a study of isochronous properties associated with certain classes of Liénard type of equations including linear Liénard type equation, quadratic Liénard type equation, mixed quadratic linear Liénard type equation and their higher order generalizations and identified the equations belonging to above mentioned equations exhibiting isochronous properties. The major issues considered in this book is to develop a systematic procedure for to identify the collective coordinate which is conjugate to the given Hamiltonian in order to generate isochronous systems. By generalizing this procedure for coupled systems in terms of i modified Hamiltonians and identified suitable canonically conjugate coordinates such that the constructed i modified Hamiltonian is nonsingular and the corresponding Newton's equation of motion is constraint free. Further, a class of N-coupled mixed quadratic linear Liénard type equations can also be identified with the help of a specific nonlocal transformation that possesses isochronous properties and studied their integrability properties.

A propos de l'auteur










She received her Ph.D in Physics from Centre for Nonlinear Dynamics, Bharathidasan University, Tiruchirapalli. She is currently working as an Assistant Professor in SASTRA Deemed to be University,Thanjavur,Tamilnadu,India. She has been actively working in the research field of Nonlinear Integrable Dynamical systems,Symmetries,Isochronous systems

Détails du produit

Auteurs A Durga Devi, A. Durga Devi, M Lakshmanan, M. Lakshmanan
Edition LAP Lambert Academic Publishing
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2021
 
EAN 9786204212876
ISBN 9786204212876
Pages 148
Catégorie Sciences naturelles, médecine, informatique, technique > Physique, astronomie > Physique théorique

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.