Fr. 40.90

PyTorch kompakt - Syntax, Design Patterns und Codebeispiele für Deep-Learning-Modelle

Allemand · Livre de poche

Expédition généralement dans un délai de 4 à 7 jours ouvrés

Description

En savoir plus

  • Kurzgefasstes und präzises Wissen zu dem populären Deep-Learning-Framework
  • Sowohl für PyTorch-Einsteiger:innen als auch für Fortgeschrittene nützlich
  • Überblick über Modellentwicklung, Deployment, das PyTorch-Ökosystem und über hilfreiche PyTorch-Bibliotheken
  • Mit Kurzeinstieg in PyTorch
Dieses praktische Nachschlagewerk zu PyTorch, einem der beliebtesten Frameworks für Deep Learning, hält jederzeit präzises Wissen für Sie bereit. Joe Papa bietet Ihnen mit seiner Referenz den direkten Zugriff auf Syntax, Design Patterns und gut nachvollziehbare PyTorch-Codebeispiele. Das Buch enthält - neben einem PyTorch-Schnelleinstieg - eine Fülle von Informationen, die Ihre Entwicklungsarbeit verbessern und effizienter machen.
Data Scientists, Softwareentwickler:innen und Machine Learning Engineers finden in diesem Buch klaren, strukturierten PyTorch-Code, der jeden Schritt der Entwicklung neuronaler Netze abdeckt - vom Laden der Daten über die Anpassung von Trainingsschleifen bis hin zur Modelloptimierung und GPU-/TPU-Beschleunigung. Erfahren Sie außerdem, wie Sie Ihre ML-Modelle über AWS, Google Cloud oder Azure deployen und auf mobilen und Edge-Geräten bereitstellen.
  • Lernen Sie Tensoren und die grundlegende Syntax von PyTorch kennen
  • Erstellen Sie maßgeschneiderte Modelle sowie eigene Komponenten und Algorithmen für Deep Learning
  • Nutzen Sie Design Patterns zu Transfer Learning, Stimmungsanalyse oder Generative Adversarial Networks (GANs) für Ihre Projekte
  • Trainieren und deployen Sie Modelle sowohl auf GPUs als auch auf TPUs
  • Beschleunigen Sie den Trainingsprozess durch Optimierung der Modelle und durch parallele und verteilte Verarbeitung
  • Informieren Sie sich über nützliche PyTorch-Bibliotheken und das PyTorch-Ökosystem

A propos de l'auteur

Joe Papa verfügt über 25 Jahre Erfahrung in Forschung und Entwicklung und ist Gründer von TeachMe.AI. Seinen Abschluss „Master of Science in Electrical Engineering“ erwarb er an der Universität Rutgers. Bei Booz Allen Hamilton und Perspecta Labs leitete er KI-Forschungsteams, bei denen PyTorch intensiv eingesetzt wurde.

Joe Papa hat Hunderte von Data Scientists als Mentor betreut und mehr als 6.000 Studierende auf der ganzen Welt auf Udemy unterrichtet.

Résumé

Eine großartige Ressource für alle, die mit PyTorch arbeiten

  • Kurzgefasstes und präzises Wissen zu dem populären Deep-Learning-Framework
  • Sowohl für PyTorch-Einsteiger:innen als auch für Fortgeschrittene nützlich
  • Überblick über Modellentwicklung, Deployment, das PyTorch-Ökosystem und über hilfreiche PyTorch-Bibliotheken
  • Mit Kurzeinstieg in PyTorch
Dieses praktische Nachschlagewerk zu PyTorch, einem der beliebtesten Frameworks für Deep Learning, hält jederzeit präzises Wissen für Sie bereit. Joe Papa bietet Ihnen mit seiner Referenz den direkten Zugriff auf Syntax, Design Patterns und gut nachvollziehbare PyTorch-Codebeispiele. Das Buch enthält – neben einem PyTorch-Schnelleinstieg – eine Fülle von Informationen, die Ihre Entwicklungsarbeit verbessern und effizienter machen.
Data Scientists, Softwareentwickler:innen und Machine Learning Engineers finden in diesem Buch klaren, strukturierten PyTorch-Code, der jeden Schritt der Entwicklung neuronaler Netze abdeckt – vom Laden der Daten über die Anpassung von Trainingsschleifen bis hin zur Modelloptimierung und GPU-/TPU-Beschleunigung. Erfahren Sie außerdem, wie Sie Ihre ML-Modelle über AWS, Google Cloud oder Azure deployen und auf mobilen und Edge-Geräten bereitstellen.
  • Lernen Sie Tensoren und die grundlegende Syntax von PyTorch kennen
  • Erstellen Sie maßgeschneiderte Modelle sowie eigene Komponenten und Algorithmen für Deep Learning
  • Nutzen Sie Design Patterns zu Transfer Learning, Stimmungsanalyse oder Generative Adversarial Networks (GANs) für Ihre Projekte
  • Trainieren und deployen Sie Modelle sowohl auf GPUs als auch auf TPUs
  • Beschleunigen Sie den Trainingsprozess durch Optimierung der Modelle und durch parallele und verteilte Verarbeitung
  • Informieren Sie sich über nützliche PyTorch-Bibliotheken und das PyTorch-Ökosystem

Détails du produit

Auteurs Joe Papa
Collaboration Frank Langenau (Traduction)
Edition dpunkt
 
Langues Allemand
Format d'édition Livre de poche
Sortie 15.12.2021
 
EAN 9783960091851
ISBN 978-3-96009-185-1
Pages 238
Dimensions 167 mm x 15 mm x 245 mm
Poids 449 g
Thème Animals
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Langages de programmation

Algorithmen, Framework, Künstliche Intelligenz, KI, Data Science, python, machine learning, Maschinelles Lernen, Artificial Intelligence, Neuronale Netze, AI, überwachtes Lernen, Supervised Learning, Unsupervised Learning, Neural Networks, PyTorch

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.