Fr. 83.00

Geometric Multivector Analysis - From Grassmann to Dirac

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus


This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions.
The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes's theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics.
The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.

 

Table des matières

Prelude: Linear algebra.- Exterior algebra.- Clifford algebra.- Mappings of inner product spaces.- Spinors in inner product spaces.- Interlude: Analysis.- Exterior calculus.- Hodge decompositions.- Hypercomplex analysis.- Dirac equations.- Multivector calculus on manifolds.- Two index theorems.

A propos de l'auteur










Andreas Rosén is a Professor at the Chalmers University of Technology and the University of Gothenburg, Sweden. His research mostly concerns Partial Differential Equations, and uses techniques from harmonic analysis and operator theory.


Commentaire

"The book is carefully prepared and well presented, and I recommend the book ... for students who have just mastered vector calculus and Maxwellian electromagnetism." (Hirokazu Nishimura, zbMATH 1433.58001, 2020)

Détails du produit

Auteurs Andreas Rosén
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 04.12.2020
 
EAN 9783030314132
ISBN 978-3-0-3031413-2
Pages 465
Dimensions 157 mm x 26 mm x 236 mm
Illustrations XIII, 465 p. 29 illus., 8 illus. in color.
Thème Birkhäuser Advanced Texts Basler Lehrbücher
Catégorie Sciences naturelles, médecine, informatique, technique > Mathématiques > Arithmétique, algèbre

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.