épuisé

K-means Clustering Algorithm: Implementation and Critical Analysis

Anglais · Livre de poche

Description

En savoir plus










Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.

A propos de l'auteur










Swati is a keen researcher in various fields like data mining, internet security, cloud Computing and Image Processing. She holds master's degree in computer engineering from North Maharashtra University, Jalgaon, India with several national and international publications.

Détails du produit

Auteurs Swati Patel
Edition Sps
 
Langues Anglais
Format d'édition Livre de poche
Sortie 31.07.2019
 
Pages 68
Dimensions 150 mm x 220 mm x 4 mm
Poids 119 g
Catégorie Sciences naturelles, médecine, informatique, technique > Technique > Electronique, électrotechnique, technique de l'information

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.