Fr. 97.00

Introduction to Real Analysis

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author's lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject.
The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more.
Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.

Table des matières

Preliminaries.- 1. Metric and Normed Spaces.- 2. Lebesgue Measure.- 3. Measurable Functions.- 4. The Lebesgue Integral.- 5. Differentiation.- 6. Absolute Continuity and the Fundamental Theorem of Calculus.- 7. The Lp Spaces.- 8. Hilbert Spaces and L^2(E).- 9. Convolution and the Fourier Transform.

A propos de l'auteur

Christopher Heil is Professor of Mathematics at the Georgia Institute of Technology in Atlanta, Georgia. His research interests include harmonic analysis, time-frequency analysis, image processing, and more.

Résumé

Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author’s lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject.
The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more.
Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.

Texte suppl.

“This book is written in a clear style that is suitable for students reading on their own or as part of a guided class. … this book gives an accessible introduction to real analysis with emphasis on Lebesgue measure and Lebesgue integration in Euclidean spaces. This book could be suitable as a primary text for a first course focused on measure theory in Euclidean spaces or, due to the numerous exercises throughout, as a supplemental text for instructors giving other introductory measure theory courses.” (Gareth Speight, Mathematical Reviews, June, 2020)
“This book is intended primarily for students beginning their graduate studies in mathematics but it will also be suitable for well-prepared undergraduates.” (Frédéric Morneau-Guérin, MAA Reviews, February 16, 2020)
“The book isreally a textbook full of intermediate motivated questions addressed to the audience and step-divided discussions. It can be suitable for first-year students in mathematics, for well-prepared undergraduate mathematical majors, and for graduate students from a variety of engineering and scientific applications.” (Sergei V. Rogosin, zbMATH 1426.26001, 2020)

Commentaire

"This book is written in a clear style that is suitable for students reading on their own or as part of a guided class. ... this book gives an accessible introduction to real analysis with emphasis on Lebesgue measure and Lebesgue integration in Euclidean spaces. This book could be suitable as a primary text for a first course focused on measure theory in Euclidean spaces or, due to the numerous exercises throughout, as a supplemental text for instructors giving other introductory measure theory courses." (Gareth Speight, Mathematical Reviews, June, 2020)
"This book is intended primarily for students beginning their graduate studies in mathematics but it will also be suitable for well-prepared undergraduates." (Frédéric Morneau-Guérin, MAA Reviews, February 16, 2020)
"The book isreally a textbook full of intermediate motivated questions addressed to the audience and step-divided discussions. It can be suitable for first-year students in mathematics, for well-prepared undergraduate mathematical majors, and for graduate students from a variety of engineering and scientific applications." (Sergei V. Rogosin, zbMATH 1426.26001, 2020)

Détails du produit

Auteurs Christopher Heil
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.01.2019
 
EAN 9783030269012
ISBN 978-3-0-3026901-2
Pages 386
Dimensions 158 mm x 242 mm x 30 mm
Poids 786 g
Illustrations XXXII, 386 p. 1 illus.
Thème Graduate Texts in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Analyse

B, Topologie, Funktionalanalysis und Abwandlungen, measure theory, Mathematics and Statistics, Topology, Functional Analysis, Functional analysis & transforms, Operator Theory, Measure and Integration, Fourier Analysis, banach spaces, random measures, Fourier series, topological vector spaces

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.