Fr. 91.00

Perturbed Gradient Flow Trees and A -algebra Structures in Morse Cohomology

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A -algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya's definition of Morse-A -categories for closed oriented manifolds involving families of Morse functions. To make A -structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid's approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.

Table des matières

1. Basics on Morse homology.- 2. Perturbations of gradient flow trajectories.- 3. Nonlocal generalizations.- 4. Moduli spaces of perturbed Morse ribbon trees.- 5. The convergence behaviour of sequences of perturbed Morse ribbon trees.- 6. Higher order multiplications and the A -relations.- 7. A -bimodule structures on Morse chain complexes.- A. Orientations and sign computations for perturbed Morse ribbon trees.

A propos de l'auteur

Dr. Stephan Mescher is a Research Fellow at the University of Leipzig. He graduated with a degree in Mathematics from Bielefeld University in 2008 and obtained his Ph.D. at the University of Leipzig in 2017, supervised by Prof. Matthias Schwarz.

Résumé

This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained.
In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will beof interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.