Fr. 189.00

Machine Learning Risk Assessments in Criminal Justice Settings

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book puts in one place and in accessible form Richard Berk's most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk.
 Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than "predictive policing" for locations in time and space, which is a very different enterprise that uses different data different data analysis tools.

 The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.

Table des matières

1 Getting Started.- 2 Some Important Background Material.- 3 A Conceptual Introduction Classification and Forecasting.- 4 A More Formal Treatment of Classification and Forecasting.- 5 Tree-Based Forecasting Methods.- 6 Transparency, Accuracy and Fairness.- 7 Real Applications.- 8 Implementation.- 9 Some Concluding Observations About Actuarial Justice and More.

A propos de l'auteur

Richard Berk is a Professor in the Department of Statistics and Department of Criminology at the University of Pennsylvania. He was previously a Distinguished Professor Statistics at UCLA. He has published 14 books and over 150 papers and book chapters on a wide range applied statistical issues, including many criminal justice applications.

Résumé

This book puts in one place and in accessible form Richard Berk’s most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk.
 Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than “predictive policing” for locations in time and space, which is a very different enterprise that uses different data different data analysis tools.

 The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.