Fr. 147.00

Euclidean Distance Matrices and Their Applications in Rigidity Theory

Anglais · Livre Relié

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. 
Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in ourapproach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.

Table des matières

Chapter 1. Mathematical Preliminaries.- Chapter 2. Positive Semidefinite Matrices.- Chapter 3. Euclidean Distance Matrices (EDMs).- Chapter 4. Classes of EDMs.- Chapter 5. The Geometry of EDMs.- Chapter 6. The Eigenvalues of EDMs.- Chapter 7. The Entries of EDMs.- Chapter 8. EDM Completions and Bar Frameworks.- Chapter 9. Local and Infinitesimal Rigidities.- Chapter 10. Universal and Dimensional Rigidities.- Epilogue.

A propos de l'auteur

Abdo Y. Alfakih is a Professor in the Department of Mathematics and Statistics at the University of Windsor. He received his PhD in Industrial and Operations Engineering at the University of Michigan. His research interests are in the areas of combinatorial optimization, semidefinite programming. His current work focuses on new approaches to the Graph Realization Problem and its relatives (bar and tensegrity framework rigidity, global rigidity, dimensional rigidity, universal rigidity etc) using Euclidean distance matrices, projected Gram matrices, Gale transform and semidefinite programming.

Résumé

This book offers a comprehensive and accessible exposition of Euclidean Distance Matrices (EDMs) and rigidity theory of bar-and-joint frameworks. It is based on the one-to-one correspondence between EDMs and projected Gram matrices. Accordingly the machinery of semidefinite programming is a common thread that runs throughout the book. As a result, two parallel approaches to rigidity theory are presented. The first is traditional and more intuitive approach that is based on a vector representation of point configuration. The second is based on a Gram matrix representation of point configuration. 
Euclidean Distance Matrices and Their Applications in Rigidity Theory begins by establishing the necessary background needed for the rest of the book. The focus of Chapter 1 is on pertinent results from matrix theory, graph theory and convexity theory, while Chapter 2 is devoted to positive semidefinite (PSD) matrices due to the key role these matrices play in ourapproach. Chapters 3 to 7 provide detailed studies of EDMs, and in particular their various characterizations, classes, eigenvalues and geometry. Chapter 8 serves as a transitional chapter between EDMs and rigidity theory. Chapters 9 and 10 cover local and universal rigidities of bar-and-joint frameworks. This book is self-contained and should be accessible to a wide audience including students and researchers in statistics, operations research, computational biochemistry, engineering, computer science and mathematics.

Texte suppl.

“This monograph is more than a standard text on matrices and rigidity theory. It is particularly important for providing the necessary information to mathematicians who are not experts in these areas. I really enjoyed the way how the topics are presented.” (Shing So, zbMATH 1422.15002, 2019)

Commentaire

"This monograph is more than a standard text on matrices and rigidity theory. It is particularly important for providing the necessary information to mathematicians who are not experts in these areas. I really enjoyed the way how the topics are presented." (Shing So, zbMATH 1422.15002, 2019)

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.