Fr. 123.00

Machine Learning Techniques for Online Social Networks

Anglais · Livre Relié

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. 

Table des matières

Chapter1. Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity.- Chapter2. Delta-Hyperbolicity and the Core-Periphery Structure in Graphs.- Chapter3. A Framework for OSN Performance Evaluation Studies.- Chapter4. On The Problem of Multi-Staged Impression Allocation in Online Social Networks.- Chapter5. Order-of-Magnitude Popularity Estimation of Pirated Content.- Chapter6. Learning What to Share in Online Social Networks using Deep Reinforcement Learning.- Chapter7. Centrality and Community Scoring Functions in Incomplete Networks: Their Sensitivity, Robustness and Reliability.- Chapter8. Ameliorating Search Results Recommendation System based on K-means Clustering Algorithm and Distance Measurements.- Chapter9. Dynamics of large scale networks following a merger.- Chapter10. Cloud Assisted Personal Online Social Network.- Chapter11. Text-Based Analysis of Emotion by Considering Tweets.

A propos de l'auteur

Tansel Özyer is an associate professor of Computer Engineering at TOBB University of Economics and Technology, Turkey. He completed his PhD in Computer Science, University of Calgary. He received his MSc and BSc from Computer Engineering departments of METU and Bilkent University. Research interests are data mining, social network analysis, machine learning, bioinformatics, XML, mobile databases, and computer vision.
Reda Alhajj is a professor in the Department of Computer Science at the University of Calgary. He published over 500 papers in refereed international journals and conferences. He is founding editor in chief of the Springer premier journal “Social Networks Analysis and Mining”, founding editor-in-chief of Springer Series “Lecture Notes on Social Networks”, founding editor-in-chief of Springer journal “Network Modeling Analysis in Health Informatics and Bioinformatics”, founding co-editor-in-chief of Springer “Encyclopedia on Social NetworksAnalysis and Mining”, founding steering chair of IEEE/ACM ASONAM, and three accompanying symposiums FAB, FOSINT-SI and HI-BI-BI. Dr. Alhajj's research concentrates primarily on data science from management to integration and analysis.

Résumé

The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields. 

Détails du produit

Collaboration Alhajj (Editeur), Alhajj (Editeur), Reda Alhajj (Editeur), Tanse Özyer (Editeur), Tansel Özyer (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.01.2018
 
EAN 9783319899312
ISBN 978-3-31-989931-2
Pages 236
Dimensions 157 mm x 19 mm x 241 mm
Poids 524 g
Illustrations VIII, 236 p. 102 illus., 85 illus. in color.
Thèmes Lecture Notes in Social Networks
Lecture Notes in Social Networks
Catégories Sciences sociales, droit, économie > Sociologie

B, Social Media, Data Mining, Media Studies, Artificial Intelligence, biotechnology, Social Sciences, Data Mining and Knowledge Discovery, Expert systems / knowledge-based systems, Social sciences—Computer programs, Social sciences—Data processing, Computational Social Sciences

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.