Fr. 50.90

Nonlinear Reaction-Diffusion Systems - Conditional Symmetry, Exact Solutions and their Applications in Biology

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems  and those developing the theoretical aspects of conditional symmetry conception, parts of the book can also be used in master's level mathematical biology courses.

Table des matières

1 Scalar reaction-diffusion equations - conditional symmetry, exact solutions and applications.- 2 Q-conditional symmetries of reaction-diffusion systems.- 3 Conditional symmetries and exact solutions of diffusive Lotka-Volterra systems.- 4 Q-conditional symmetries of the first type and exact solutions of nonlinear reaction-diffusion systems.- A List of reaction-diffusion systems and exact solutions.- Index.

A propos de l'auteur

Roman Cherniha graduated in mathematics from the Taras Shevchenko Kyiv State University (1981), and defended his PhD dissertation (1987) and habilitation (2003) at the Institute of Mathematics, NAS of Ukraine. During his early career, he gained substantial experience on the field of applied mathematics and physics at the Institute of Technical Heat Physics (Kyiv). Since 1992, he has held a permanent position at the Institute of Mathematics. He spent a few years abroad working at the Henri Poincaré Unniversity (a temporary CNRS position) and the University of Nottingham (Marie Curie Research Fellow). He has a wide range of research interests including: non-linear partial differential equations (especially reaction-diffusion equations): Lie and conditional symmetries, exact solutions and their properties; development of new methods for analytically solving non-linear PDEs; application of modern methods for analytically solving nonlinear boundary-value problems arising in  real world application; analytically  and numerically  solving boundary-value problems with free boundaries; development of mathematical models describing the specific processes arising in physics, biology and medicine.
Vasyl’ Davydovych   graduated in mathematics from the Lesya Ukrainka  Volyn National  University (2009),  and defended his PhD dissertation (2014) at the  Institute of Mathematics,  NAS of Ukraine. At present, he is a junior researcher at the Institute of Mathematics at the NAS of Ukraine. He is currently investigating nonlinear PDEs using symmetry-based methods. His primary aim is the study of nonlinear reaction-diffusion systems arising in real-world applications (such as the diffusive Lotka-Volterra  type systems).

Résumé

This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems  and those developing the theoretical aspects of conditional symmetry conception, parts of the book can also be used in master’s level mathematical biology courses.

Texte suppl.

“The aim of this book is to identify particular solutions for a wide range of reaction-diffusion Systems … . This book is primarily addressed to mathematicians working in the field of reaction-diffusion systems. Biological mathematicians can readily use the particular solutions that are listed in this book (rather convenient summary tables are given).” (Thomas Giletti, zbMATH 1391.35003, 2018)

Commentaire

"The aim of this book is to identify particular solutions for a wide range of reaction-diffusion Systems ... . This book is primarily addressed to mathematicians working in the field of reaction-diffusion systems. Biological mathematicians can readily use the particular solutions that are listed in this book (rather convenient summary tables are given)." (Thomas Giletti, zbMATH 1391.35003, 2018)

Détails du produit

Auteurs Roma Cherniha, Roman Cherniha, Vasyl' Davydovych
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 31.12.2017
 
EAN 9783319654652
ISBN 978-3-31-965465-2
Pages 160
Dimensions 156 mm x 237 mm x 11 mm
Poids 286 g
Illustrations XIII, 160 p. 13 illus., 10 illus. in color.
Thèmes Lecture Notes in Mathematics
Lecture Notes in Mathematics
Catégories Sciences naturelles, médecine, informatique, technique > Mathématiques > Autres

Analysis, B, Mathematische Physik, Differentialrechnung und -gleichungen, Mathematics and Statistics, Mathematical physics, Partial Differential Equations, Differential calculus & equations, Biomathematics, Mathematical and Computational Biology

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.