Fr. 134.00

Prediction and Inference from Social Networks and Social Media

Anglais · Livre Relié

Expédition généralement dans un délai de 2 à 3 semaines (titre imprimé sur commande)

Description

En savoir plus

This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.

Table des matières

Chapter1. Having Fun?: Personalized Activity-based Mood Prediction in Social Media.- Chapter2. Automatic Medical Image Multilingual Indexation through a Medical Social Network.- Chapter3. The Significant Effect of Overlapping Community Structures in Signed Social Networks.- Chapter4. Extracting Relations Between Symptoms by Age-Frame Based Link Prediction.- Chapter5. Link Prediction by Network Analysis.- Chapter6. Structure-Based Features for Predicting the Quality of Articles in Wikipedia.- Chapter7. Predicting Collective Action from Micro-Blog Data.- Chapter8. Discovery of Structural and Temporal Patterns in MOOC Discussion Forums.- Chapter9. Diffusion Process in a Multi-Dimension Networks: Generating, Modelling and Simulation.

Résumé

This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.

Détails du produit

Collaboration Niti Agarwal (Editeur), Nitin Agarwal (Editeur), Jalal Kawash (Editeur), Tansel Özyer (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre Relié
Sortie 01.01.2017
 
EAN 9783319510484
ISBN 978-3-31-951048-4
Pages 225
Dimensions 160 mm x 241 mm x 19 mm
Poids 514 g
Illustrations IX, 225 p. 82 illus., 54 illus. in color.
Thèmes Lecture Notes in Social Networks
Springer
Lecture Notes in Social Networks
Catégorie Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.