Fr. 79.40

Fundamentals of Predictive Text Mining

Anglais · Livre de poche

Expédition généralement dans un délai de 1 à 2 semaines (titre imprimé sur commande)

Description

En savoir plus

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Table des matières

Overview of Text Mining.- From Textual Information to Numerical Vectors.- Using Text for Prediction.- Information Retrieval and Text Mining.- Finding Structure in a Document Collection.- Looking for Information in Documents.- Data Sources for Prediction: Databases, Hybrid Data and the Web.- Case Studies.- Emerging Directions.

A propos de l'auteur










Dr. Sholom M. Weissis a Professor Emeritus of Computer Science at Rutgers University, a Fellow of the Association for the Advancement of Artificial Intelligence, and co-founder of AI Data-Miner LLC, New York.
Dr. Nitin Indurkhya is faculty member at the School of Computer Science and Engineering, University of New South Wales, Australia, and the Institute of Statistical Education, Arlington, VA, USA. He is also a co-founder of AI Data-Miner LLC, New York.
Dr. Tong Zhang is a Professor of Statistics and Biostatistics at Rutgers University.


Résumé

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Texte suppl.

“Fundamentals of predictive text mining is a second edition that is designed as a textbook, with questions and exercises in each chapter. … The book can be used with data mining software for hands-on experience for students. … The book will be very useful for people planning to go into this field or to learn techniques that could be used in a big data environment.” (S. Srinivasan, Computing Reviews, February, 2016)

Commentaire

"Fundamentals of predictive text mining is a second edition that is designed as a textbook, with questions and exercises in each chapter. ... The book can be used with data mining software for hands-on experience for students. ... The book will be very useful for people planning to go into this field or to learn techniques that could be used in a big data environment." (S. Srinivasan, Computing Reviews, February, 2016)

Détails du produit

Auteurs Niti Indurkhya, Nitin Indurkhya, Sholom Weiss, Sholom M Weiss, Sholom M. Weiss, Tong Zhang
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 01.01.2016
 
EAN 9781447171133
ISBN 978-1-4471-7113-3
Pages 239
Dimensions 156 mm x 236 mm x 15 mm
Poids 399 g
Illustrations XIII, 239 p. 115 illus.
Thèmes Texts in Computer Science
Texts in Computer Science
Catégorie Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Informatique

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.