Fr. 70.00

Deep Learning and Data Labeling for Medical Applications - First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings

Anglais · Livre de poche

Expédition généralement dans un délai de 6 à 7 semaines

Description

En savoir plus

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Table des matières

Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.

Résumé

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty.The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Détails du produit

Collaboration Vasileios Belagiannis (Editeur), Andrew Bradley (Editeur), Jaime S. Cardoso (Editeur), Gustavo Carneiro (Editeur), Julien Cornebise (Editeur), Peter Loïc (Editeur), Marco Loog (Editeur), Zhi Lu (Editeur), Dian Mateus (Editeur), Diana Mateus (Editeur), Jacinto C. Nascimento (Editeur), João Paulo Papa (Editeur), Loïc Peter (Editeur), Loïc Peter (Editeur), Loïc Peter et al (Editeur), João Manuel R. S. Tavares (Editeur)
Edition Springer, Berlin
 
Langues Anglais
Format d'édition Livre de poche
Sortie 31.12.2016
 
EAN 9783319469751
ISBN 978-3-31-946975-1
Pages 280
Dimensions 169 mm x 17 mm x 238 mm
Poids 453 g
Illustrations XIII, 280 p. 115 illus.
Thèmes Lecture Notes in Computer Science
Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Image Processing, Computer Vision, Pattern Recognition, and Graphics
Catégories Sciences naturelles, médecine, informatique, technique > Informatique, ordinateurs > Applications, programmes

C, Künstliche Intelligenz, machine learning, neurosurgery, Artificial Intelligence, Mustererkennung, Grafikprogrammierung, Computeranwendungen in Industrie und Technologie, computer science, Computer Vision, Health Informatics, Image Processing and Computer Vision, Computer Graphics, pattern recognition, Automated Pattern Recognition, Health & safety aspects of IT, Optical data processing, Graphics programming, Computer applications in industry and technology, Transfer Learning, semi-supervised learning, semantic description, multi-label annotation, parameter approximation

Commentaires des clients

Aucune analyse n'a été rédigée sur cet article pour le moment. Sois le premier à donner ton avis et aide les autres utilisateurs à prendre leur décision d'achat.

Écris un commentaire

Super ou nul ? Donne ton propre avis.

Pour les messages à CeDe.ch, veuillez utiliser le formulaire de contact.

Il faut impérativement remplir les champs de saisie marqués d'une *.

En soumettant ce formulaire, tu acceptes notre déclaration de protection des données.